Proper Functors and Fixed Points for Finite Behaviour

The rational fixed point of a set functor is well-known to capture the behaviour of finite coalgebras. In this paper we consider functors on algebraic categories. For them the rational fixed point may no longer be fully abstract, i.e. a subcoalgebra of the final coalgebra. Inspired by Esik and Maletti's notion of a proper semiring, we introduce the notion of a proper functor. We show that for proper functors the rational fixed point is determined as the colimit of all coalgebras with a free finitely generated algebra as carrier and it is a subcoalgebra of the final coalgebra. Moreover, we prove that a functor is proper if and only if that colimit is a subcoalgebra of the final coalgebra. These results serve as technical tools for soundness and completeness proofs for coalgebraic regular expression calculi, e.g. for weighted automata.

[1]  Jan J. M. M. Rutten,et al.  Automata and Coinduction (An Exercise in Coalgebra) , 1998, CONCUR.

[2]  J. Adámek,et al.  Locally Presentable and Accessible Categories: Bibliography , 1994 .

[3]  Jirí Adámek,et al.  Elgot Algebras: (Extended Abstract) , 2006, MFPS.

[4]  Jirí Adámek,et al.  On Algebras with Effectful Iteration , 2018, CMCS.

[5]  Ernst-Erich Doberkat,et al.  Eilenberg-Moore algebras for stochastic relations , 2006, Inf. Comput..

[6]  Alexandra Silva,et al.  Generalizing determinization from automata to coalgebras , 2013, Log. Methods Comput. Sci..

[7]  Zoltán Ésik,et al.  Simulation vs. Equivalence , 2010, FCS.

[8]  Alexandra Silva,et al.  Trace semantics via determinization , 2015, J. Comput. Syst. Sci..

[9]  Stefan Milius,et al.  A New Foundation for Finitary Corecursion - The Locally Finite Fixpoint and Its Properties , 2016, FoSSaCS.

[10]  Peter Freyd,et al.  Redei’s finiteness theorem for commutative semigroups , 1968 .

[11]  Zoltán Ésik,et al.  Free iterative and iteration K-semialgebras , 2010, ArXiv.

[12]  Jirí Adámek,et al.  On second-order iterative monads , 2011, Theor. Comput. Sci..

[13]  Alexandra Silva,et al.  Towards a Coalgebraic Chomsky Hierarchy - (Extended Abstract) , 2014, IFIP TCS.

[14]  Marcello M. Bonsangue,et al.  Context-free coalgebras , 2015, J. Comput. Syst. Sci..

[15]  Stefan Milius,et al.  A New Foundation for Finitary Corecursion and Iterative Algebras , 2018, Inf. Comput..

[16]  Zoltán Ésik,et al.  Simulations of Weighted Tree Automata , 2010, CIAA.

[17]  Jan J. M. M. Rutten,et al.  Universal coalgebra: a theory of systems , 2000, Theor. Comput. Sci..

[18]  Jan J. M. M. Rutten Rational Streams Coalgebraically , 2008, Log. Methods Comput. Sci..

[19]  Ana Sokolova,et al.  Congruences of convex algebras , 2015 .

[20]  I. Petre,et al.  Algebraic Systems and Pushdown Automata , 2009 .

[21]  Henning Urbat Finite Behaviours and Finitary Corecursion , 2017, CALCO.

[22]  A. Sokolova,et al.  Sound and Complete Axiomatization of Trace Semantics for Probabilistic Systems , 2011, MFPS.

[23]  Gordon D. Plotkin,et al.  Abstract syntax and variable binding , 1999, Proceedings. 14th Symposium on Logic in Computer Science (Cat. No. PR00158).

[24]  Ernst-Erich Doberkat Erratum and Addendum: Eilenberg-Moore algebras for stochastic relations , 2008, Inf. Comput..

[25]  F. Bartels On generalised coinduction and probabilistic specification formats : Distributive laws in coalgebraic modelling , 2004 .

[26]  Jirí Adámek,et al.  Corecursive Algebras, Corecursive Monads and Bloom Monads , 2014, Log. Methods Comput. Sci..

[27]  Jirí Adámek,et al.  Iterative algebras at work , 2006, Mathematical Structures in Computer Science.

[28]  Marcello M. Bonsangue,et al.  Coalgebraic Characterizations of Context-Free Languages , 2013, Log. Methods Comput. Sci..

[29]  Joost Winter A Completeness Result for Finite λ-bisimulations , 2015, FoSSaCS.

[30]  Stefan Milius,et al.  Proper Functors and their Rational Fixed Point , 2017, CALCO.

[31]  Jean Berstel,et al.  Rational series and their languages , 1988, EATCS monographs on theoretical computer science.

[32]  Stefan Milius A Sound and Complete Calculus for Finite Stream Circuits , 2010, 2010 25th Annual IEEE Symposium on Logic in Computer Science.

[33]  Marcel Paul Schützenberger,et al.  On the Definition of a Family of Automata , 1961, Inf. Control..

[34]  Bruno Courcelle,et al.  Fundamental Properties of Infinite Trees , 1983, Theor. Comput. Sci..

[35]  Alexandra Silva,et al.  Non-Deterministic Kleene Coalgebras , 2010, Log. Methods Comput. Sci..

[36]  Alexandra Silva,et al.  Sound and Complete Axiomatizations of Coalgebraic Language Equivalence , 2011, TOCL.

[37]  Susanna Ginali,et al.  Regular Trees and the Free Iterative Theory , 1979, J. Comput. Syst. Sci..

[38]  Stefan Milius,et al.  Finitary Corecursion for the Infinitary Lambda Calculus , 2015, CALCO.

[39]  L. Rédei,et al.  The theory of finitely generated commutative semigroups , 1965 .

[40]  P. T. Johnstone,et al.  Adjoint Lifting Theorems for Categories of Algebras , 1975 .

[41]  Jirí Adámek,et al.  Semantics of Higher-Order Recursion Schemes , 2009, CALCO.

[42]  Jirí Adámek,et al.  Free iterative theories: a coalgebraic view , 2003, Mathematical Structures in Computer Science.

[43]  Ana Sokolova,et al.  Proper Semirings and Proper Convex Functors , 2018, FoSSaCS.