Selenium-Doped Black Phosphorus for High-Responsivity 2D Photodetectors.

Se-doped black phosphorus (BP) crystal, in centimeter scale, is synthesized by a scalable gas-phase growth method under mild conditions. The Se-doped BP exhibits high quality with excellent electrical properties. The Se dope induces over 20-fold enhancement of responsivity (R) for BP-based 2D photodetectors, resulting in a high R and external quantum efficiency of 15.33 A W-1 and 2993%, respectively.

[1]  F. Xia,et al.  Ultrafast graphene photodetector , 2009, CLEO/QELS: 2010 Laser Science to Photonic Applications.

[2]  Du Xiang,et al.  Surface transfer doping induced effective modulation on ambipolar characteristics of few-layer black phosphorus , 2015, Nature Communications.

[3]  Lifeng Wang,et al.  Synthesis of few-layer GaSe nanosheets for high performance photodetectors. , 2012, ACS nano.

[4]  Boris I. Yakobson,et al.  Vapor Phase Growth and Grain Boundary Structure of Molybdenum Disulfide Atomic Layers , 2013 .

[5]  Phaedon Avouris,et al.  Black phosphorus photodetector for multispectral, high-resolution imaging. , 2014, Nano letters.

[6]  K. Unterrainer,et al.  Intrinsic Response Time of Graphene Photodetectors , 2011, Nano letters.

[7]  P. Schmidt,et al.  Synthesis and identification of metastable compounds: black arsenic--science or fiction? , 2012, Angewandte Chemie.

[8]  S Winnerl,et al.  Carrier relaxation in epitaxial graphene photoexcited near the Dirac point. , 2011, Physical review letters.

[9]  Ke Xu,et al.  High-responsivity graphene/silicon-heterostructure waveguide photodetectors , 2013, Nature Photonics.

[10]  A. Morita,et al.  Preparation of Black Phosphorus Single Crystals by a Completely Closed Bismuth-Flux Method and Their Crystal Morphology , 1989 .

[11]  F. Xia,et al.  Graphene photodetectors for high-speed optical communications , 2010, 1009.4465.

[12]  G. Steele,et al.  Fast and broadband photoresponse of few-layer black phosphorus field-effect transistors. , 2014, Nano letters.

[13]  A. Morita,et al.  Semiconducting black phosphorus , 1986 .

[14]  Bin Yu,et al.  Extraordinary photoresponse in two-dimensional In(2)Se(3) nanosheets. , 2014, ACS nano.

[15]  Direct observation of the transition from indirect to direct bandgap in atomically thin epitaxial MoSe2. , 2014, Nature nanotechnology.

[16]  Likai Li,et al.  Black phosphorus field-effect transistors. , 2014, Nature nanotechnology.

[17]  K. Müllen,et al.  Graphene as Transparent Electrode Material for Organic Electronics , 2011, Advanced materials.

[18]  J. Coleman,et al.  Two-Dimensional Nanosheets Produced by Liquid Exfoliation of Layered Materials , 2011, Science.

[19]  S. Shi,et al.  Ab initio studies on atomic and electronic structures of black phosphorus , 2010 .

[20]  S. Min,et al.  MoS₂ nanosheet phototransistors with thickness-modulated optical energy gap. , 2012, Nano letters.

[21]  Jing Chen,et al.  Scalable Clean Exfoliation of High‐Quality Few‐Layer Black Phosphorus for a Flexible Lithium Ion Battery , 2016, Advanced materials.

[22]  Jing Guo,et al.  Performance Limits of Monolayer Transition Metal Dichalcogenide Transistors , 2011, IEEE Transactions on Electron Devices.

[23]  M. Terrones,et al.  Photosensor Device Based on Few‐Layered WS2 Films , 2013 .

[24]  Jun Wang,et al.  Liquid exfoliation of solvent-stabilized few-layer black phosphorus for applications beyond electronics , 2015, Nature Communications.

[25]  Towards high-performance two-dimensional black phosphorus optoelectronic devices: the role of metal contacts , 2014, 2014 IEEE International Electron Devices Meeting.

[26]  M. Fontana,et al.  Electron-hole transport and photovoltaic effect in gated MoS2 Schottky junctions , 2012, Scientific Reports.

[27]  Tom Nilges,et al.  Access and in situ growth of phosphorene-precursor black phosphorus , 2014 .

[28]  A. Radenović,et al.  Single-layer MoS2 transistors. , 2011, Nature nanotechnology.

[29]  V. Fal’ko,et al.  High-sensitivity photodetectors based on multilayer GaTe flakes. , 2014, ACS nano.

[30]  Andre K. Geim,et al.  Electric Field Effect in Atomically Thin Carbon Films , 2004, Science.

[31]  H. Krebs,et al.  Über die Struktur und Eigenschaften der Halbmetalle. VIII. Die katalytische Darstellung des schwarzen Phosphors , 1955 .

[32]  K. Mak,et al.  Optical spectroscopy of graphene: From the far infrared to the ultraviolet , 2012 .

[33]  Jun Lou,et al.  Vapour phase growth and grain boundary structure of molybdenum disulphide atomic layers. , 2013, Nature materials.

[34]  A. Splendiani,et al.  Emerging photoluminescence in monolayer MoS2. , 2010, Nano letters.

[35]  Andras Kis,et al.  Ultrasensitive photodetectors based on monolayer MoS2. , 2013, Nature nanotechnology.

[36]  Bin Yu,et al.  Layered semiconductor molybdenum disulfide nanomembrane based Schottky-barrier solar cells. , 2012, Nanoscale.

[37]  Yu Jia,et al.  Anomalous doping effect in black phosphorene using first-principles calculations. , 2014, Physical chemistry chemical physics : PCCP.

[38]  Y. Maruyama,et al.  Synthesis and some properties of black phosphorus single crystals , 1981 .

[39]  Yu Wang,et al.  Large area, continuous, few-layered graphene as anodes in organic photovoltaic devices , 2009 .

[40]  S. Rundqvist,et al.  Refinement of the crystal structure of black phosphorus , 1965 .

[41]  Kenneth L. Shepard,et al.  Chip-integrated ultrafast graphene photodetector with high responsivity , 2013, Nature Photonics.

[42]  Hua Zhang,et al.  Single-layer MoS2 phototransistors. , 2012, ACS nano.

[43]  T. Fromherz,et al.  CMOS-compatible graphene photodetector covering all optical communication bands , 2013, 1302.3854.

[44]  P. W. Bridgman TWO NEW MODIFICATIONS OF PHOSPHORUS. , 1914 .

[45]  Large and tunable photothermoelectric effect in single-layer MoS2. , 2013, Nano letters.

[46]  Xianfan Xu,et al.  Black phosphorus-monolayer MoS2 van der Waals heterojunction p-n diode. , 2014, ACS nano.

[47]  P. Ye,et al.  Channel length scaling of MoS2 MOSFETs. , 2012, ACS nano.

[48]  Ø. Prytz,et al.  The influence of exact exchange corrections in van der Waals layered narrow bandgap black phosphorus , 2010, Journal of physics. Condensed matter : an Institute of Physics journal.

[49]  Young-Chul Lee,et al.  Stable semiconductor black phosphorus (BP)@titanium dioxide (TiO2) hybrid photocatalysts , 2015, Scientific Reports.