Semiparametric Bayesian analysis for longitudinal mixed effects models with non-normal AR(1) errors

This paper studies Bayesian inference on longitudinal mixed effects models with non-normal AR(1) errors. We model the nonparametric zero-mean noise in the autoregression residual with a Dirichlet process (DP) mixture model. Applying the empirical likelihood tool, an adjusted sampler based on the Pólya urn representation of DP is proposed to incorporate information of the moment constraints of the mixing distribution. A Gibbs sampling algorithm based on the adjusted sampler is proposed to approximate the posterior distributions under DP priors. The proposed method can easily be extended to address other moment constraints owing to the wide application background of the empirical likelihood. Simulation studies are used to evaluate the performance of the proposed method. Our method is illustrated via the analysis of a longitudinal dataset from a psychiatric study.

[1]  Pierre Alquier,et al.  Noisy Monte Carlo: convergence of Markov chains with approximate transition kernels , 2014, Statistics and Computing.

[2]  D. Blackwell,et al.  Ferguson Distributions Via Polya Urn Schemes , 1973 .

[3]  N. Lazar Bayesian empirical likelihood , 2003 .

[4]  Albert Y. Lo,et al.  Bayes Methods for a Symmetric Unimodal Density and its Mode , 1989 .

[5]  J. Ware,et al.  Random-effects models for longitudinal data. , 1982, Biometrics.

[6]  Radford M. Neal Markov Chain Sampling Methods for Dirichlet Process Mixture Models , 2000 .

[7]  Peter D. Hoff,et al.  Nonparametric estimation of convex models via mixtures , 2003 .

[8]  John Geweke,et al.  Evaluating the accuracy of sampling-based approaches to the calculation of posterior moments , 1991 .

[9]  David B. Dunson,et al.  Semiparametric Bayes hierarchical models with mean and variance constraints , 2010, Comput. Stat. Data Anal..

[10]  M. Escobar,et al.  Bayesian Density Estimation and Inference Using Mixtures , 1995 .

[11]  H. Bondell,et al.  Flexible Bayesian quantile regression for independent and clustered data. , 2010, Biostatistics.

[12]  Hwan-sik Choi Expert Information and Nonparametric Bayesian Inference of Rare Events , 2016 .

[13]  P. Bech,et al.  Imipramine: Clinical effects and pharmacokinetic variability , 1977, Psychopharmacology.

[14]  H Goldstein,et al.  Multilevel time series models with applications to repeated measures data. , 1994, Statistics in medicine.

[15]  J G Ibrahim,et al.  A semiparametric Bayesian approach to the random effects model. , 1998, Biometrics.

[16]  A. El-Shaarawi,et al.  ARMA Models with Double-exponentially Distributed Noise , 1989 .

[17]  J. Sethuraman A CONSTRUCTIVE DEFINITION OF DIRICHLET PRIORS , 1991 .

[18]  M. Escobar Estimating Normal Means with a Dirichlet Process Prior , 1994 .

[19]  Guosheng Yin,et al.  Bayesian generalized method of moments , 2009 .

[20]  Bayesian model selection in linear mixed effects models with autoregressive(p) errors using mixture priors , 2014 .

[21]  H. Lian,et al.  Bayesian quantile regression for longitudinal data models , 2012 .

[22]  C. Antoniak Mixtures of Dirichlet Processes with Applications to Bayesian Nonparametric Problems , 1974 .

[23]  T. Ferguson A Bayesian Analysis of Some Nonparametric Problems , 1973 .

[24]  Roser Bono,et al.  Using the linear mixed model to analyze nonnormal data distributions in longitudinal designs , 2012, Behavior research methods.

[25]  T. Fan,et al.  ESTIMATION IN MULTIVARIATE t LINEAR MIXED MODELS FOR MULTIPLE LONGITUDINAL DATA , 2011 .

[26]  Donald Hedeker,et al.  Longitudinal Data Analysis , 2006 .

[27]  Jim E. Griffin,et al.  An adaptive truncation method for inference in Bayesian nonparametric models , 2013, Statistics and Computing.

[28]  M. Tiku,et al.  Time Series Models in Non‐Normal Situations: Symmetric Innovations , 2000 .

[29]  Gareth O. Roberts,et al.  Convergence Properties of Perturbed Markov Chains , 1998, Journal of Applied Probability.

[30]  S. MacEachern,et al.  Estimating mixture of dirichlet process models , 1998 .

[31]  Peter Müller,et al.  CENTER-ADJUSTED INFERENCE FOR A NONPARAMETRIC BAYESIAN RANDOM EFFECT DISTRIBUTION. , 2011, Statistica Sinica.

[32]  Francesco Bartolucci,et al.  Longitudinal analysis of self‐reported health status by mixture latent auto‐regressive models , 2014 .

[33]  G. Reinsel,et al.  Models for Longitudinal Data with Random Effects and AR(1) Errors , 1989 .

[34]  On an unbalanced growth curve model with random effects and AR(1) errors from a Bayesian and the ML points of view , 1999 .