A framework for nonparametric profile monitoring

Control charts have been widely used for monitoring the functional relationship between a response variable and some explanatory variable(s) (called profile) in various industrial applications. In this article, we propose an easy-to-implement framework for monitoring nonparametric profiles in both Phase I and Phase II of a control chart scheme. The proposed framework includes the following steps: (i) data cleaning; (ii) fitting B-spline models; (iii) resampling for dependent data using block bootstrap method; (iv) constructing the confidence band based on bootstrap curve depths; and (v) monitoring profiles online based on curve matching. It should be noted that, the proposed method does not require any structural assumptions on the data and, it can appropriately accommodate the dependence structure of the within-profile observations. We illustrate and evaluate our proposed framework by using a real data set.

[1]  B. Silverman,et al.  Nonparametric Regression and Generalized Linear Models: A roughness penalty approach , 1993 .

[2]  William H. Woodall,et al.  Nonparametric Profile Monitoring by Mixed Effects Modeling. Comment. , 2010 .

[3]  Yu Ding,et al.  Phase I Analysis for Monitoring Nonlinear Profiles in Manufacturing Processes , 2006 .

[4]  Joseph P. Romano,et al.  The stationary bootstrap , 1994 .

[5]  Ying-Chao Hung,et al.  Nonparametric profile monitoring in multi-dimensional data spaces , 2012 .

[6]  D. Cox Nonparametric Regression and Generalized Linear Models: A roughness penalty approach , 1993 .

[7]  David Hinkley,et al.  Bootstrap Methods: Another Look at the Jackknife , 2008 .

[8]  B. Efron Bootstrap Methods: Another Look at the Jackknife , 1979 .

[9]  D. Hawkins,et al.  NONPARAMETRIC CONTROL CHART FOR MONITORING PROFILES USING CHANGE POINT FORMULATION AND ADAPTIVE SMOOTHING , 2009 .

[10]  M. Chernick Wiley Series in Probability and Statistics , 2007 .

[11]  Adrian F. M. Smith,et al.  Automatic Bayesian curve fitting , 1998 .

[12]  Richard L. Smith,et al.  PREDICTIVE INFERENCE , 2004 .

[13]  Fugee Tsung,et al.  Monitoring Profiles Based on Nonparametric Regression Methods , 2008, Technometrics.

[14]  M. Stone Cross‐Validatory Choice and Assessment of Statistical Predictions , 1976 .

[15]  Massimo Pacella,et al.  On the use of principal component analysis to identify systematic patterns in roundness profiles , 2007, Qual. Reliab. Eng. Int..

[16]  Willis A. Jensen,et al.  Profile Monitoring via Nonlinear Mixed Models , 2009 .

[17]  Hang Zhang,et al.  Detecting outliers in complex profiles using a χ2 control chart method , 2009 .

[18]  P. Bühlmann,et al.  Block length selection in the bootstrap for time series , 1999 .

[19]  Eric Chicken Nonparametric Nonlinear Profiles , 2011 .

[20]  C. R. Deboor,et al.  A practical guide to splines , 1978 .

[21]  H. Künsch The Jackknife and the Bootstrap for General Stationary Observations , 1989 .

[22]  Olivier Boëffard,et al.  Melodic contour estimation with B-spline models using a MDL criterion , 2006 .

[23]  G. C. Tiao,et al.  Estimation of time series parameters in the presence of outliers , 1988 .

[24]  Daniel Peña Outliers, Influential Observations, and Missing Data , 2011 .

[25]  S. Lahiri Theoretical comparisons of block bootstrap methods , 1999 .

[26]  Yi-Kuan Tseng,et al.  A semiparametric extended hazard regression model with time-dependent covariates , 2014 .

[27]  P. Hall,et al.  On blocking rules for the bootstrap with dependent data , 1995 .

[28]  Soumendra N. Lahiri,et al.  A nonparametric plug-in rule for selecting optimal block lengths for block bootstrap methods ☆ , 2007 .

[29]  Emily K. Lada,et al.  A wavelet-based procedure for process fault detection , 2002 .

[30]  Stefania Mignani,et al.  Markov Chain Monte Carlo in Stastical Mechanics , 2001, Technometrics.

[31]  Nicolas Molinari,et al.  Bounded optimal knots for regression splines , 2004, Comput. Stat. Data Anal..

[32]  A. B. Yeh,et al.  Bootstrap percentile confidence bands based on the concept of curve depth , 1996 .

[33]  Leo Breiman,et al.  Fitting additive models to regression data , 1993, Computational Statistics & Data Analysis.

[34]  J. Friedman,et al.  FLEXIBLE PARSIMONIOUS SMOOTHING AND ADDITIVE MODELING , 1989 .

[35]  Rassoul Noorossana,et al.  Statistical Analysis of Profile Monitoring , 2011 .

[36]  F. Mosteller,et al.  Inference in an Authorship Problem , 1963 .

[37]  Eric Chicken,et al.  Statistical Process Monitoring of Nonlinear Profiles Using Wavelets , 2009 .

[38]  Anthony C. Davison,et al.  Bootstrap Methods and Their Application , 1998 .

[39]  Shing I. Chang,et al.  Statistical process control for monitoring non-linear profiles using wavelet filtering and B-Spline approximation , 2010 .

[40]  Grace Wahba,et al.  Spline Models for Observational Data , 1990 .

[41]  Yohei Saika Markov‐Chain Monte Carlo Simulation of Inverse‐Halftoning for Error Diffusion based on Statistical Mechanics of the Q‐Ising Model , 2008 .

[42]  Martin Meckesheimer,et al.  Automatic outlier detection for time series: an application to sensor data , 2007, Knowledge and Information Systems.

[43]  Peihua Qiu,et al.  Nonparametric Profile Monitoring by Mixed Effects Modeling , 2010, Technometrics.

[44]  R. Tibshirani,et al.  Generalized Additive Models , 1991 .