Integration of quantum dots with lithium niobate photonics

The integration of quantum emitters with integrated photonics enables complex quantum photonic circuits that are necessary for photonic implementation of quantum simulators, computers, and networks. Thin-film lithium niobate is an ideal material substrate for quantum photonics because it can tightly confine light in small waveguides and has a strong electro-optic effect that can switch and modulate single photons at low power and high speed. However, lithium niobite lacks efficient single-photon emitters, which are essential for scalable quantum photonic circuits. We demonstrate deterministic coupling of single-photon emitters with a lithium niobate photonic chip. The emitters are composed of InAs quantum dots embedded in an InP nanobeam, which we transfer to a lithium niobate waveguide with nanoscale accuracy using a pick-and place approach. An adiabatic taper transfers single photons emitted into the nanobeam to the lithium niobate waveguide with high efficiency. We verify the single photon nature of the emission using photon correlation measurements performed with an on-chip beamsplitter. Our results demonstrate an important step toward fast, reconfigurable quantum photonic circuits for quantum information processing.

[1]  I. Kaminow,et al.  Metal‐diffused optical waveguides in LiNbO3 , 1974 .

[2]  T. Gaylord,et al.  Lithium niobate: Summary of physical properties and crystal structure , 1985 .

[3]  E.L. Wooten,et al.  A review of lithium niobate modulators for fiber-optic communications systems , 2000, IEEE Journal of Selected Topics in Quantum Electronics.

[4]  E. Knill,et al.  A scheme for efficient quantum computation with linear optics , 2001, Nature.

[5]  Daniele Rezzonico,et al.  Electro–optically tunable microring resonators in lithium niobate , 2007, 0705.2392.

[6]  G. Milburn,et al.  Linear optical quantum computing with photonic qubits , 2005, quant-ph/0512071.

[7]  Dirk Englund,et al.  Coherent generation of non-classical light on a chip via photon-induced tunnelling and blockade , 2008, 0804.2740.

[8]  H. J. Kimble,et al.  The quantum internet , 2008, Nature.

[9]  A. Politi,et al.  Shor’s Quantum Factoring Algorithm on a Photonic Chip , 2009, Science.

[10]  Gerd Marowsky,et al.  Evanescent-field-induced second harmonic generation by noncentrosymmetric nanoparticles. , 2010, Optics express.

[11]  Yasunobu Nakamura,et al.  Quantum computers , 2010, Nature.

[12]  A. Politi,et al.  Quantum Walks of Correlated Photons , 2010, Science.

[13]  Justin R Caram,et al.  Long-lived quantum coherence in photosynthetic complexes at physiological temperature , 2010, Proceedings of the National Academy of Sciences.

[14]  Todd A. Brun,et al.  Quantum Computing , 2011, Computer Science, The Hardware, Software and Heart of It.

[15]  Alán Aspuru-Guzik,et al.  Photonic quantum simulators , 2012, Nature Physics.

[16]  Huiying Hu,et al.  Lithium niobate on insulator (LNOI) for micro‐photonic devices , 2012 .

[17]  J. Rarity,et al.  Photonic quantum technologies , 2009, 1003.3928.

[18]  P. Lodahl,et al.  Efficient out-coupling of high-purity single photons from a coherent quantum dot in a photonic-crystal cavity , 2014, 1402.6967.

[19]  Ivan Mukhin,et al.  Electrostatic pick-and-place micro/nanomanipulation under the electron beam , 2014 .

[20]  Michal Lipson,et al.  High Coupling Efficiency Etched Facet Tapers in Silicon Waveguides , 2014, IEEE Photonics Technology Letters.

[21]  J. O'Brien,et al.  Universal linear optics , 2015, Science.

[22]  Christopher J. K. Richardson,et al.  Two-photon interference from a bright single photon source at telecom wavelengths , 2015, 1511.05617.

[23]  I. Sagnes,et al.  Near-optimal single-photon sources in the solid state , 2015, Nature Photonics.

[24]  Y. Arakawa,et al.  Single-photon emission at 1.5 μm from an InAs/InP quantum dot with highly suppressed multi-photon emission probabilities , 2016 .

[25]  Mihir K. Bhaskar,et al.  A fiber-coupled diamond quantum nanophotonic interface , 2016, 1612.05285.

[26]  F. Baida,et al.  Argon plasma inductively coupled plasma reactive ion etching study for smooth sidewall thin film lithium niobate waveguide application , 2016 .

[27]  A Knorr,et al.  Exploring Dephasing of a Solid-State Quantum Emitter via Time- and Temperature-Dependent Hong-Ou-Mandel Experiments. , 2015, Physical review letters.

[28]  Jian-Wei Pan,et al.  On-Demand Single Photons with High Extraction Efficiency and Near-Unity Indistinguishability from a Resonantly Driven Quantum Dot in a Micropillar. , 2016, Physical review letters.

[29]  D. Englund,et al.  Solid-state single-photon emitters , 2016, Nature Photonics.

[30]  Sae Woo Nam,et al.  Heterogeneous integration for on-chip quantum photonic circuits with single quantum dot devices , 2016, Nature Communications.

[31]  P. Senellart,et al.  High-performance semiconductor quantum-dot single-photon sources. , 2017, Nature nanotechnology.

[32]  Marko Loncar,et al.  Monolithic ultra-high-Q lithium niobate microring resonator , 2017, 1712.04479.

[33]  Dirk Englund,et al.  Hybrid Integration of Solid-State Quantum Emitters on a Silicon Photonic Chip. , 2017, Nano letters.

[34]  S. Fathpour,et al.  Compact Lithium Niobate Electrooptic Modulators , 2018, IEEE Journal of Selected Topics in Quantum Electronics.

[35]  Graham D. Marshall,et al.  Large-scale silicon quantum photonics implementing arbitrary two-qubit processing , 2018, Nature Photonics.

[36]  Michal Lipson,et al.  Nanophotonic lithium niobate electro-optic modulators. , 2017, Optics express.

[37]  Edo Waks,et al.  A single-photon switch and transistor enabled by a solid-state quantum memory , 2018, Science.

[38]  Alberto Peruzzo,et al.  Ultra-low loss photonic circuits in lithium niobate on insulator. , 2017, Optics express.

[39]  R. Grange,et al.  Extreme electro-optic tuning of Bragg mirrors integrated in lithium niobate nanowaveguides. , 2018, Optics letters.

[40]  Michael Siegel,et al.  Fully On-Chip Single-Photon Hanbury-Brown and Twiss Experiment on a Monolithic Semiconductor-Superconductor Platform. , 2018, Nano letters.

[41]  Je-Hyung Kim,et al.  Super-Radiant Emission from Quantum Dots in a Nanophotonic Waveguide. , 2018, Nano letters.