Implementation of FFT Structures Using the Residue Number System

This paper considers the implementation of a fast Fourier transform (FFT) structure using arrays of read-only memories. The arithmetic operations are based entirely on the residue number system. The most important aspect of the structure relates to the scaling arrays, which are required to prevent overflow. Because of the limitations of the number system, scaling factors have to be chosen on an a priori basis. This paper develops optimum procedures for choosing both scaling factors and the position of scaling arrays in the structure. Some examples are presented relating to the filtering of speech via a convolutional filter structure.

[1]  E. Brigham,et al.  A nomogram for determining FFT system dynamic range , 1977 .

[2]  G. Bergland,et al.  A fast Fourier transform global, highly parallel processor , 1969 .

[3]  G. Bergland Fast Fourier transform hardware implementations--A survey , 1969 .

[4]  Harvey F. Silverman,et al.  An introduction to programming the Winograd Fourier transform algorithm (WFTA) , 1977 .

[5]  G. Bergland,et al.  Fast Fourier transform hardware implementations--An overview , 1969 .

[6]  G. Zeoli,et al.  Quantization and Saturation Noise Due to Analog-to-Digital Conversion , 1971, IEEE Transactions on Aerospace and Electronic Systems.

[7]  W. C. Miller,et al.  Hardware realization of digital signal processing elements using the residue number system. , 1977 .

[8]  Kenneth C. Smith,et al.  A Parallel Radix-4 Fast Fourier Transform Computer , 1975, IEEE Transactions on Computers.

[9]  Graham A. Jullien,et al.  Residue Number Scaling and Other Operations Using ROM Arrays , 1978, IEEE Transactions on Computers.

[10]  Kenneth Steiglitz,et al.  Teminology in digital signal processing , 1972 .

[11]  Bede Liu,et al.  A new hardware realization of high-speed fast Fourier transformers , 1975 .

[12]  H. Helms Fast Fourier transform method of computing difference equations and simulating filters , 1967, IEEE Transactions on Audio and Electroacoustics.

[13]  P. Welch A fixed-point fast Fourier transform error analysis , 1969 .

[14]  W. Kenneth Jenkins,et al.  The use of residue number systems in the design of finite impulse response digital filters , 1977 .

[15]  M. Soderstrand A high-speed low-cost recursive digital filter using residue number arithmetic , 1977, Proceedings of the IEEE.

[16]  J. Flanagan Spectrum analysis in speech coding , 1967, IEEE Transactions on Audio and Electroacoustics.

[17]  H. Buijs,et al.  On the design of a real time modular FFT processor , 1976 .

[18]  B. Tseng,et al.  Comments on "An introduction to programming the winograd Fourier transform algorithm (WFTA)" , 1978 .

[19]  C. Rader An improved algorithm for high speed autocorrelation with applications to spectral estimation , 1970 .