Performance and Combustion Analysis of a Micro Gas Turbine-Solid Oxide Fuel Cell Hybrid System

An integrated methodology aims at estimation of the actual possibility of operating an hybrid system based on a solid oxide fuel cell and a micro gas turbine, by paying special attention to the adaptation of the rotating and stationary components to the off-design conditions. The method leads to the definition of the operating space of the hybrid system, thus allowing detection of optimal choices for an efficient part-load operation. The computational fluid dynamics (CFD)-based analysis of the combustion chamber is addressed to the verification of the response of this component when employed as an afterburner of the residual species from the fuel cell.

[1]  Faryar Jabbari,et al.  Development of Dynamic Modeling Tools for Solid Oxide and Molten Carbonate Hybrid Fuel Cell Gas Turbine Systems , 2000 .

[2]  Aristide F. Massardo,et al.  Simplified Versus Detailed SOFC Reactor Models and Influence on the Simulation of the Design Point Performance of Hybrid Systems , 2002 .

[3]  Kousuke Nishida,et al.  Performance Evaluation of Multi-Stage SOFC and Gas Turbine Combined Systems , 2002 .

[4]  Stefano Campanari Parametric Analysis of Small Scale Recuperated SOFC/Gas Turbine Cycles , 2004 .

[5]  Raffaele Tuccillo,et al.  A CFD Based Off-Design Study of Micro-Gas Turbines Combustors , 2005 .

[6]  Eric Croiset,et al.  Simulation of a tubular solid oxide fuel cell stack using AspenPlusTM unit operation models , 2004 .

[7]  M. C. Cameretti,et al.  The Employment of Hydrogenerated Fuels From Natural Gas Reforming: Gas Turbine and Combustion Analysis , 2004 .

[8]  Tong Seop Kim,et al.  Comparative Performance Assessment of Pressurized Solid Oxide Fuel Cell/Gas Turbine Hybrid Systems Considering Various Design Options , 2005 .

[9]  J. B. Young,et al.  Exergy Analysis of Modern Fossil-Fuel Power Plants , 2000 .

[10]  Jacob Brouwer,et al.  Development of a Solid-Oxide Fuel Cell/Gas Turbine Hybrid System Model for Aerospace Applications , 2004 .

[11]  Giulio Mori,et al.  Micro Gas Turbine Combustion Chamber Design and CFD Analysis , 2004 .

[12]  A. A. Amsden,et al.  KIVA-3V: A Block-Structured KIVA Program for Engines with Vertical or Canted Valves , 1997 .

[13]  Shinji Kimijima,et al.  PERFORMANCE EVALUATION OF GAS TURBINE-FUEL CELL HYBRID MICRO GENERATION SYSTEM , 2002 .

[14]  Giulio Mori,et al.  Assessment of Traditional and Flamelets Models for Micro Turbine Combustion Chamber Optimisation , 2003 .

[15]  Joshua E. Freeh,et al.  Development of Parametric Mass and Volume Models for an Aerospace SOFC/Gas Turbine Hybrid System , 2005 .

[16]  Alberto Traverso,et al.  Transient Analysis of Solid Oxide Fuel Cell Hybrids: Part C — Whole-Cycle Model , 2004 .

[17]  Fabio Bozza,et al.  Performance Prediction and Combustion Modeling of Low-CO2 Emission Gas Turbines , 2001 .

[18]  Ulrich Stimming,et al.  Optimization of a 200 kW SOFC cogeneration power plant. Part II: variation of the flowsheet , 1998 .

[19]  Aristide F. Massardo,et al.  Design and part-load performance of a hybrid system based on a solid oxide fuel cell reactor and a micro gas turbine , 2001 .

[20]  Raffaele Tuccillo,et al.  Comparing Different Solutions for the Micro-Gas Turbine Combustor , 2004 .

[21]  Stefano Campanari,et al.  Thermodynamic model and parametric analysis of a tubular SOFC module , 2001 .

[22]  Fabio Bozza,et al.  The Employment of Hydrogenated Fuels From Natural Gas Reforming: Gas Turbine and Combustion Analysis , 2002 .

[23]  James Larminie,et al.  Fuel Cell Systems Explained , 2000 .

[24]  M. C. Cameretti,et al.  Adapting the Micro-Gas Turbine Operation to Variable Thermal and Electrical Requirements , 2005 .

[25]  Dieter Bohn,et al.  Assessment of the Potential of Combined Micro Gas Turbine and High Temperature Fuel Cell Systems , 2002 .

[26]  Loredana Magistri,et al.  Transient Analysis of Solid Oxide Fuel Cell Hybrids: Part A — Fuel Cell Models , 2004 .

[27]  H. Ho,et al.  Modelling of simple hybrid solid oxide fuel cell and gas turbine power plant , 2002 .

[28]  Loredana Magistri,et al.  Ejector performance influence on a solid oxide fuel cell anodic recirculation system , 2004 .

[29]  James Larminie,et al.  Fuel Cell Systems Explained: Larminie/Fuel Cell Systems Explained , 2003 .

[30]  Christoph Stiller,et al.  Safe Dynamic Operation of a Simple SOFC/GT Hybrid System , 2005 .

[31]  Georgia C. Karvountzi,et al.  Optimization of a MCFC/Turbine Hybrid System for Cogeneration , 2003 .

[32]  Kaj Fagervik,et al.  Optimization of an , 1999 .

[33]  Fabio Bozza,et al.  Transient Operation Analysis of a Cogenerating Micro-Gas Turbine , 2004 .

[34]  S. Chan,et al.  Polarization effects in electrolyte/electrode-supported solid oxide fuel cells , 2002 .

[35]  Tong Seop Kim,et al.  Parametric Studies for a Performance Analysis of a SOFC/MGT Hybrid Power System Based on a Quasi-2D Model , 2004 .

[36]  S. Singhal Advances in solid oxide fuel cell technology , 2000 .

[37]  Alberto Traverso,et al.  Transient Analysis of Solid Oxide Fuel Cell Hybrids: Part B — Anode Recirculation Model , 2004 .

[38]  S. Chan,et al.  Simulation of a solid oxide fuel cell power system fed by methane , 2005 .

[39]  M. G. Pangalis,et al.  Integration of solid oxide fuel cells into gas turbine power generation cycles. Part 1: Fuel cell thermodynamic modelling , 2002 .

[40]  Vincenzo Antonucci,et al.  Partial oxidation of CH4 in solid oxide fuel cells: simulation model of the electrochemical reactor and experimental validation , 1996 .