A model for planktic foraminiferal shell growth

In this paper we analyze the laws of growth that control planktic foraminiferal shell morphology. We assume that isometry is the key toward the understanding of their ontogeny. Hence, our null hypothesis is that these organisms construct isometric shells. To test this hypothesis, geometric models of their shells have been generated with a personal computer. It is demonstrated that early chambers in log-spirally coiled structures cannot follow a strict isometric arrangement. In the real world, the centers of juvenile chambers deviate from the logarithmic growth curve. Juvenile stages are generally more planispiral and contain more chambers per whorl than adult stages. These traits are shown to be essential in order to keep volumes of consecutive chambers in geometric progression. We are convinced that the neanic stage marks the constructional bridge from a juvenile set of growth parameters to an adult one. The adult stage can be strictly isometric, that is, the effective shape is constant and the increase in volume after a chamber addition is proportional to the preexisting volume of the shell. The shell volume is related to the biomass, the ratio of outer shell surface area to shell volume is related to the respiration rate and the ratio of the total shell surface area to shell volume is related to the total calcification effort. The influence of the parameters of the model on these relationships is investigated. Only the initial radius and the rate of radius increase affect the relationships between shell volume and surface area. The other shape parameters merely provide a fine tune-up of these relationships. Size itself plays a major role during foraminiferal development.

[1]  G. P. Lohmann Eigenshape analysis of microfossils: A general morphometric procedure for describing changes in shape , 1983 .

[2]  M. Hart A water depth model for the evolution of the planktonic Foraminiferida , 1980, Nature.

[3]  F. T. Banner A classification and introduction to the Globigerinacea , 1982 .

[4]  S. Gould ALLOMETRY AND SIZE IN ONTOGENY AND PHYLOGENY , 1966, Biological reviews of the Cambridge Philosophical Society.

[5]  C. Hickman Gastropod radulae and the assessment of form in evolutionary paleontology , 1980, Paleobiology.

[6]  F. Bookstein “Size and Shape”: A Comment on Semantics , 1989 .

[7]  W. Hay,et al.  Function of the Test in Foraminifera , 1969 .

[8]  S. C. Ackerly Kinematics of accretionary shell growth, with examples from brachiopods and molluscs , 1989, Paleobiology.

[9]  F. Parker,et al.  Planktonic foraminiferal species in Pacific sediments , 1962 .

[10]  F. Bookstein,et al.  Morphometrics in Evolutionary Biology. , 1986 .

[11]  T. Okamoto,et al.  Analysis of heteromorph ammonoids by differential geometry , 1988 .

[12]  C. Hemleben,et al.  Lunar and semi-lunar reproductive cycles in some spinose planktonic foraminifers , 1990 .

[13]  W. Riegraf Planktonic foraminifera (Globuligerinidae) from the Callovian (Middle Jurassic) of Southwest Germany , 1987 .

[14]  Jelle Bijma,et al.  A computer method for estimating volumes and surface areas of complex structures consisting of overlapping spheres , 1992 .

[15]  A. Bé,et al.  Taxonomic and ecological significance of embryonic and juvenile planktonic foraminifera , 1985 .

[16]  F. T. Banner,et al.  Aspects of Micropalaeontology , 1982 .

[17]  Christoph Hemleben,et al.  Planktonic foraminiferal ontogeny and new perspectives for micropalaeontology , 1986, Nature.

[18]  Wolfgang H Berger,et al.  PLANKTONIC FORAMINIFERA: BASIC MORPHOLOGY AND ECOLOGIC IMPLICATIONS , 1969 .

[19]  M. Renzi,et al.  Shell coiling in some larger foraminifera; general comments and problems , 1988 .

[20]  F. Bookstein,et al.  THE STRUCTURE OF INDIVIDUAL VARIATION IN MIOCENE GLOBOROTALIA , 1990, Evolution; international journal of organic evolution.

[21]  H. Moseley XVII. On the geometrical forms of turbinated and discoid shells , 1838, Philosophical Transactions of the Royal Society of London.

[22]  F. Bookstein Size and Shape Spaces for Landmark Data in Two Dimensions , 1986 .

[23]  R. Cifelli RADIATION OF CENOZOIC PLANKTONIC FORAMINIFERA , 1969 .

[24]  A. R. Loeblich,et al.  Foraminiferal evolution, diversification, and extinction , 1988 .

[25]  O. Anderson,et al.  An estimation of calcium carbonate deposition rate in a planktonic foraminifer Globigerinoides sacculifer using 45 Ca as a tracer; a recommended procedure for improved accuracy , 1984 .

[26]  G. H. Scott The relationship between the Miocene Foraminiferida Globorotalia miozea miozea and G. praemenardii , 1972 .

[27]  R. Thom Stabilité structurelle et morphogenèse , 1974 .

[28]  Richard D. Norris,et al.  Biased extinction and evolutionary trends , 1991, Paleobiology.

[29]  S. Stanley,et al.  AN EXPLANATION FOR COPE'S RULE , 1973, Evolution; international journal of organic evolution.

[30]  J. Kennett,et al.  Biometric analysis of phenotypic variation in RecentGlobigerina bulloides d'Orbigny in the southern Indian Ocean , 1976 .

[31]  Douglas F. Williams,et al.  Fourier analysis of test shape of planktonic foraminifera , 1981, Nature.

[32]  G. H. Scott Basal Miocene Correlation: Globigerinoides from Southern New Zealand , 1970 .

[33]  D M Raup,et al.  Theoretical Morphology of the Coiled Shell , 1965, Science.

[34]  C. H. WADDINGTON,et al.  Towards a Theoretical Biology , 1968, Nature.

[35]  Adolf Seilacher,et al.  ARBEITSKONZEPT ZUR KONSTRUKTIONS‐MORPHOLOGIE , 1970 .

[36]  S. Gould Evolutionary paleontology and the science of form , 1970 .

[37]  Christoph Hemleben,et al.  Modern Planktonic Foraminifera , 1988, Springer New York.

[38]  John Tyler Bonner,et al.  Evolution and Development , 1998 .

[39]  David M. Raup,et al.  Geometric analysis of shell coiling; general problems , 1966 .

[40]  G. H. Scott Ontogeny and shape in Globorotalia menardii , 1973 .

[41]  W. Berggren,et al.  Neogene planktonic foraminifera: A phylogenetic atlas , 1983 .

[42]  H. Hansen,et al.  Ultrastructural and radiotracer studies of pore function in foraminifera , 1979 .

[43]  Christoph Hemleben,et al.  Ontogeny of extant spinose planktonic foraminifera (Globigerinidae): A concept exemplified byGlobigerinoides sacculifer (Brady) andG. Ruber (d'Orbigny) , 1987 .