Cyclopentadiene dimerization in cucurbiturils: Origin of catalysis, dynamics and solvent effect

[1]  N. Kircheva,et al.  Metal-Assisted Complexation of Fluorogenic Dyes by Cucurbit[7]uril and Cucurbit[8]uril: A DFT Evaluation of the Key Factors Governing the Host–Guest Recognition , 2023, Molecules.

[2]  José G. Santos,et al.  Advancement in supramolecular control of organic reactivity induced by cucurbit[n]urils , 2022, Journal of Inclusion Phenomena and Macrocyclic Chemistry.

[3]  Michael D. Pluth,et al.  Supramolecular Activation of S8 by Cucurbiturils in Water and Mechanism of Reduction to H2S by Thiols: Insights into Biological Sulfane Sulfur Trafficking. , 2022, Journal of the American Chemical Society.

[4]  N. Barooah,et al.  Cucurbituril-Based Supramolecular Assemblies: Prospective on Drug Delivery, Sensing, Separation, and Catalytic Applications. , 2022, Langmuir : the ACS journal of surfaces and colloids.

[5]  Nazar Rad,et al.  Effect of Na+ and K+ on the cucurbituril-mediated hydrolysis of a phenyl acetate. , 2022, Chemical communications.

[6]  Khaleel I. Assaf,et al.  Cucurbit[7]uril Recognition of Glucosamine Anomers in Water , 2022, Journal of Molecular Liquids.

[7]  W. Nau,et al.  Supramolecular Catalysis of a Catalysis-Resistant Diels–Alder Reaction: Almost Theoretical Acceleration of Cyclopentadiene Dimerization inside Cucurbit[7]uril , 2022, ACS Catalysis.

[8]  T. Lu,et al.  Independent gradient model based on Hirshfeld partition: A new method for visual study of interactions in chemical systems , 2021, J. Comput. Chem..

[9]  Xi Zhang,et al.  Cucurbit[7]uril-Modulated H/D Exchange of α-Carbonyl Hydrogen: Deceleration in Alkali and Acceleration in Acid Conditions. , 2021, Langmuir : the ACS journal of surfaces and colloids.

[10]  J. Harvey,et al.  Effect of solvent motions on the dynamics of the Diels-Alder reaction. , 2021, Physical chemistry chemical physics : PCCP.

[11]  Seemita Banerjee,et al.  Metal-Free Supramolecular Catalytic Hydrolysis of Ammonia Borane through Cucurbituril Nanocavitands. , 2021, ACS applied materials & interfaces.

[12]  Mauro Fianchini,et al.  Separating Enthalpic, Configurational, and Solvation Entropic Components in Host-Guest Binding: Application to Cucurbit[7]uril Complexes through a Full In Silico Approach via Water Nanodroplets. , 2020, The journal of physical chemistry. B.

[13]  E. Rosta,et al.  Toward Understanding CB[7]-Based Supramolecular Diels-Alder Catalysis , 2020, Frontiers in Chemistry.

[14]  Xi Zhang,et al.  Cucurbit[n]urils for supramolecular catalysis. , 2020, Chemistry.

[15]  L. Chung,et al.  Unusual KIE and dynamics effects in the Fe-catalyzed hetero-Diels-Alder reaction of unactivated aldehydes and dienes , 2020, Nature Communications.

[16]  Yong-Wei Zhang,et al.  Supramolecular Catalysis of m-Xylene Isomerization by Cucurbiturils: Transition State Stabilization, Vibrational Coupling, and Dynamic Binding Equilibrium , 2020, The journal of physical chemistry. C, Nanomaterials and interfaces.

[17]  Kaiya Wang,et al.  Supramolecular Strategies for Controlling Reactivity within Confined Nanospace. , 2020, Angewandte Chemie.

[18]  D. Das,et al.  Applications of Cucurbiturils in Medicinal Chemistry and Chemical Biology , 2019, Front. Chem..

[19]  K. Houk,et al.  Evaluation of DFT Methods and Implicit Solvation Models for Anion‐Binding Host‐Guest Systems , 2019, Helvetica Chimica Acta.

[20]  L. García‐Río,et al.  Cucurbituril-Mediated Catalytic Hydrolysis: A Kinetic and Computational Study with Neutral and Cationic Dioxolanes in CB7 , 2018, ACS Catalysis.

[21]  Fengjiao Liu,et al.  Molecular dynamics of the two-stage mechanism of cyclopentadiene dimerization: concerted or stepwise? , 2018, Chemical Physics.

[22]  E. Rosta,et al.  Cucurbit[7]uril as a Supramolecular Artificial Enzyme for Diels-Alder Reactions. , 2017, Angewandte Chemie.

[23]  J. Rebek,et al.  Quantum Chemical Modeling of Cycloaddition Reaction in a Self-Assembled Capsule. , 2017, Journal of the American Chemical Society.

[24]  Xi Zhang,et al.  A Supramolecularly Activated Radical Cation for Accelerated Catalytic Oxidation. , 2016, Angewandte Chemie.

[25]  M. Fiałkowski,et al.  Triggering autocatalytic reaction by host-guest interactions. , 2016, Chemical communications.

[26]  Oren A Scherman,et al.  Cucurbituril-Based Molecular Recognition. , 2015, Chemical reviews.

[27]  Jan H. Jensen,et al.  Predicting accurate absolute binding energies in aqueous solution: thermodynamic considerations for electronic structure methods. , 2015, Physical chemistry chemical physics : PCCP.

[28]  M. Besora,et al.  Computational Study on the Mechanism of the Acceleration of 1,3-Dipolar Cycloaddition inside Cucurbit[6]uril , 2015 .

[29]  W. Nau,et al.  Cucurbiturils: from synthesis to high-affinity binding and catalysis. , 2015, Chemical Society reviews.

[30]  K. Houk,et al.  Diels–Alder Reactions of Allene with Benzene and Butadiene: Concerted, Stepwise, and Ambimodal Transition States , 2014, The Journal of organic chemistry.

[31]  C. Bannwarth,et al.  The Thermochemistry of London Dispersion-Driven Transition Metal Reactions: Getting the ‘Right Answer for the Right Reason’ , 2014, ChemistryOpen.

[32]  M. Sundararajan Quantum chemical challenges for the binding of simple alkanes to supramolecular hosts. , 2013, The journal of physical chemistry. B.

[33]  Oren A Scherman,et al.  Release of high-energy water as an essential driving force for the high-affinity binding of cucurbit[n]urils. , 2012, Journal of the American Chemical Society.

[34]  Tian Lu,et al.  Multiwfn: A multifunctional wavefunction analyzer , 2012, J. Comput. Chem..

[35]  Frank Neese,et al.  The ORCA program system , 2012 .

[36]  S. Grimme,et al.  A thorough benchmark of density functional methods for general main group thermochemistry, kinetics, and noncovalent interactions. , 2011, Physical chemistry chemical physics : PCCP.

[37]  Michael K Gilson,et al.  New ultrahigh affinity host-guest complexes of cucurbit[7]uril with bicyclo[2.2.2]octane and adamantane guests: thermodynamic analysis and evaluation of M2 affinity calculations. , 2011, Journal of the American Chemical Society.

[38]  W. Nau,et al.  Transition-metal-promoted chemoselective photoreactions at the cucurbituril rim. , 2011, Angewandte Chemie.

[39]  D. A. Singleton,et al.  Newtonian kinetic isotope effects. Observation, prediction, and origin of heavy-atom dynamic isotope effects. , 2009, Journal of the American Chemical Society.

[40]  W. Nau,et al.  Cucurbituril-mediated supramolecular acid catalysis. , 2009, Organic letters.

[41]  C. Cramer,et al.  Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions. , 2009, The journal of physical chemistry. B.

[42]  S. P. Gejji,et al.  Electronic structure, molecular electrostatic potential, and NMR chemical shifts in cucurbit[n]urils (n = 5-8), ferrocene, and their complexes. , 2008, The journal of physical chemistry. A.

[43]  W. Nau,et al.  Activation and stabilization of drugs by supramolecular pKa shifts: drug-delivery applications tailored for cucurbiturils. , 2008, Angewandte Chemie.

[44]  A. Kaifer,et al.  Complexation of ferrocene derivatives by the cucurbit[7]uril host: a comparative study of the cucurbituril and cyclodextrin host families. , 2005, Journal of the American Chemical Society.

[45]  W. Nau,et al.  Mechanism of host-guest complexation by cucurbituril. , 2004, Journal of the American Chemical Society.

[46]  P. Kollman,et al.  A well-behaved electrostatic potential-based method using charge restraints for deriving atomic char , 1993 .

[47]  R. Swendsen,et al.  THE weighted histogram analysis method for free‐energy calculations on biomolecules. I. The method , 1992 .