Quasi-Monte Carlo simulation of Brownian sheet with application to option pricing
暂无分享,去创建一个
[1] Stphane Mallat,et al. A Wavelet Tour of Signal Processing, Third Edition: The Sparse Way , 2008 .
[2] H. Niederreiter. Low-discrepancy and low-dispersion sequences , 1988 .
[3] J. Halton. On the efficiency of certain quasi-random sequences of points in evaluating multi-dimensional integrals , 1960 .
[4] Harald Niederreiter,et al. Quasi-Monte Carlo Methods for Multidimensional Numerical Integration , 1988 .
[5] H. Niederreiter. Quasi-Monte Carlo methods and pseudo-random numbers , 1978 .
[6] D. Sornette,et al. The Dynamics of the Forward Interest Rate Curve with Stochastic String Shocks , 1998, cond-mat/9801321.
[7] H. Faure. Discrépance de suites associées à un système de numération (en dimension s) , 1982 .
[8] Kai-Tai Fang,et al. The effective dimension and quasi-Monte Carlo integration , 2003, J. Complex..
[9] Harald Niederreiter,et al. Random number generation and Quasi-Monte Carlo methods , 1992, CBMS-NSF regional conference series in applied mathematics.
[10] R. Caflisch,et al. Quasi-Monte Carlo integration , 1995 .
[11] I. Sobol. On the distribution of points in a cube and the approximate evaluation of integrals , 1967 .
[12] P. Glasserman,et al. A Comparison of Some Monte Carlo and Quasi Monte Carlo Techniques for Option Pricing , 1998 .
[13] D. Heath,et al. Bond Pricing and the Term Structure of Interest Rates: A Discrete Time Approximation , 1990, Journal of Financial and Quantitative Analysis.