Optimal investments for risk- and ambiguity-averse preferences: a duality approach

Ambiguity, also called Knightian or model uncertainty, is a key feature in financial modeling. A recent paper by Maccheroni et al. (preprint, 2004) characterizes investor preferences under aversion against both risk and ambiguity. Their result shows that these preferences can be numerically represented in terms of convex risk measures. In this paper we study the corresponding problem of optimal investment over a given time horizon, using a duality approach and building upon the results by Kramkov and Schachermayer (Ann. Appl. Probab. 9, 904–950, 1999; Ann. Appl. Probab. 13, 1504–1516, 2003).

[1]  D. Hernández-Hernández,et al.  Robust utility maximization in a stochastic factor model , 2006 .

[2]  Volker Krätschmer Robust representation of convex risk measures by probability measures , 2005, Finance Stochastics.

[3]  J. Aubin,et al.  Applied Nonlinear Analysis , 1984 .

[4]  丸山 徹 Convex Analysisの二,三の進展について , 1977 .

[5]  S. Peng,et al.  A dynamic maximum principle for the optimization of recursive utilities under constraints , 2001 .

[6]  I. Gilboa,et al.  Maxmin Expected Utility with Non-Unique Prior , 1989 .

[7]  Helmut Herwartz,et al.  Modeling the FIBOR/EURIBOR Swap Term Structure: An Empirical Approach , 2005 .

[8]  I. Vajda,et al.  Convex Statistical Distances , 2018, Statistical Inference for Engineers and Data Scientists.

[9]  D. Hernández-Hernández,et al.  A control approach to robust utility maximization with logarithmic utility and time-consistent penalties , 2007 .

[10]  Anne Gundel,et al.  Robust utility maximization for complete and incomplete market models , 2005, Finance Stochastics.

[11]  F. Delbaen The Structure of m–Stable Sets and in Particular of the Set of Risk Neutral Measures , 2006 .

[12]  Denis Talay,et al.  Worst case model risk management , 2002, Finance Stochastics.

[13]  Burgert Christian,et al.  Optimal consumption strategies under model uncertainty , 2005 .

[14]  Alexander Schied,et al.  Robust Preferences and Convex Measures of Risk , 2002 .

[15]  M. Schweizer,et al.  A Stochastic Control Approach to a Robust Utility Maximization Problem , 2007 .

[16]  E. Jouini,et al.  Law Invariant Risk Measures Have the Fatou Property , 2005 .

[17]  Alexander Schied,et al.  Convex measures of risk and trading constraints , 2002, Finance Stochastics.

[18]  M. Quenez Optimal Portfolio in a Multiple-Priors Model , 2004 .

[19]  W. Schachermayer,et al.  The asymptotic elasticity of utility functions and optimal investment in incomplete markets , 1999 .

[20]  Alexander Schied,et al.  On the Neyman–Pearson problem for law-invariant risk measures and robust utility functionals , 2004, math/0407127.

[21]  W. Härdle,et al.  Nonparametric Risk Management With Generalized Hyperbolic Distributions , 2005 .

[22]  Reinhold Kainhofer H. Föllmer, A. Schied: Stochastic finance: an introduction in discrete time. de Gruyter Studies in Mathematics 27 , 2008 .

[23]  Marc Teboulle,et al.  Penalty Functions and Duality in Stochastic Programming Via ϕ-Divergence Functionals , 1987, Math. Oper. Res..

[24]  Michel Émery,et al.  In memoriam Paul-André Meyer : Séminaire de probabilités XXXIX , 2006 .

[25]  F. Delbaen,et al.  Dynamic Monetary Risk Measures for Bounded Discrete-Time Processes , 2004, math/0410453.

[26]  Philipp J. Schönbucher,et al.  Advances in Finance and Stochastics , 2002 .

[27]  D. Schmeidler Subjective Probability and Expected Utility without Additivity , 1989 .

[28]  Giacomo Scandolo,et al.  Conditional and dynamic convex risk measures , 2005, Finance Stochastics.

[29]  Mark D. Schroder,et al.  Optimal lifetime consumption-portfolio strategies under trading constraints and generalized recursiv , 2003 .

[30]  N. Karoui,et al.  Optimal derivatives design under dynamic risk measures , 2004 .

[31]  M. Müller,et al.  Market completion and robust utility maximization , 2005 .

[32]  A. Schied Risk Measures and Robust Optimization Problems , 2006 .

[33]  W. Schachermayer,et al.  Necessary and sufficient conditions in the problem of optimal investment in incomplete markets , 2003 .

[34]  ching-tang wu,et al.  Duality theory for optimal investments under model uncertainty , 2005 .

[35]  Alexander Schied,et al.  Optimal Investments for Robust Utility Functionals in Complete Market Models , 2005, Math. Oper. Res..

[36]  F. Delbaen,et al.  A general version of the fundamental theorem of asset pricing , 1994 .

[37]  T. Sargent,et al.  Robust Control and Model Uncertainty , 2001 .

[38]  H. Föllmer,et al.  Stochastic Finance: An Introduction in Discrete Time , 2002 .

[39]  Hélyette Geman,et al.  Pricing and hedging in incomplete markets , 2001 .

[40]  S. Weber,et al.  DISTRIBUTION‐INVARIANT RISK MEASURES, INFORMATION, AND DYNAMIC CONSISTENCY , 2006 .

[41]  H. Föllmer,et al.  Robust projections in the class of martingale measures , 2006 .

[42]  M. Frittelli,et al.  Putting order in risk measures , 2002 .

[43]  Francesco Russo,et al.  Seminar on stochastic analysis, random fields and applications IV , 1995 .

[44]  Martin Schneider,et al.  Recursive multiple-priors , 2003, J. Econ. Theory.

[45]  A. Rustichini,et al.  Ambiguity Aversion, Malevolent Nature, and the Variational Representation of Preferences , 2004 .