Graphite as Cointercalation Electrode for Sodium‐Ion Batteries: Electrode Dynamics and the Missing Solid Electrolyte Interphase (SEI)

[1]  P. Novák,et al.  Nanosized Si/cellulose fiber/carbon composites as high capacity anodes for lithium-ion batteries: A galvanostatic and dilatometric study , 2009 .

[2]  Tsutomu Ohzuku,et al.  Formation of Lithium‐Graphite Intercalation Compounds in Nonaqueous Electrolytes and Their Application as a Negative Electrode for a Lithium Ion (Shuttlecock) Cell , 1993 .

[3]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[4]  A. Becke Density-functional thermochemistry. III. The role of exact exchange , 1993 .

[5]  Marek Sierka,et al.  Fast evaluation of the Coulomb potential for electron densities using multipole accelerated resolution of identity approximation , 2003 .

[6]  Liquan Chen,et al.  Chemical intercalation of solvated sodium ions in graphite , 2016 .

[7]  S. H. Vosko,et al.  Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis , 1980 .

[8]  S. Tobishima,et al.  Glyme-based nonaqueous electrolytes for rechargeable lithium cells , 2004 .

[9]  P. Novák,et al.  The influence of electrolyte and graphite type on the PF 6 - intercalation behaviour at high potentials , 2009 .

[10]  Seung M. Oh,et al.  Solid-State NMR and Electrochemical Dilatometry Study on Li+ Uptake/Extraction Mechanism in SiO Electrode , 2007 .

[11]  S. Seki,et al.  Oxidative-stability enhancement and charge transport mechanism in glyme-lithium salt equimolar complexes. , 2011, Journal of the American Chemical Society.

[12]  Hideki Nakayama,et al.  First-principles study of alkali metal-graphite intercalation compounds , 2012 .

[13]  H. Gasteiger,et al.  Anodic Oxidation of Conductive Carbon and Ethylene Carbonate in High-Voltage Li-Ion Batteries Quantified by On-Line Electrochemical Mass Spectrometry , 2015 .

[14]  Shinichi Komaba,et al.  Research development on sodium-ion batteries. , 2014, Chemical reviews.

[15]  G. Kresse,et al.  Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set , 1996 .

[16]  Debasish Mohanty,et al.  The state of understanding of the lithium-ion-battery graphite solid electrolyte interphase (SEI) and its relationship to formation cycling , 2016 .

[17]  Bingan Lu,et al.  Soft Carbon as Anode for High‐Performance Sodium‐Based Dual Ion Full Battery , 2017 .

[18]  Gerbrand Ceder,et al.  Electrode Materials for Rechargeable Sodium‐Ion Batteries: Potential Alternatives to Current Lithium‐Ion Batteries , 2012 .

[19]  Keith Share,et al.  Durable potassium ion battery electrodes from high-rate cointercalation into graphitic carbons , 2016 .

[20]  Marco Häser,et al.  Auxiliary basis sets to approximate Coulomb potentials , 1995 .

[21]  G. Kresse,et al.  Ab initio molecular dynamics for liquid metals. , 1993 .

[22]  Hubert A. Gasteiger,et al.  Consumption of Fluoroethylene Carbonate (FEC) on Si-C Composite Electrodes for Li-Ion Batteries , 2016 .

[23]  Kazuma Gotoh,et al.  NMR study for electrochemically inserted Na in hard carbon electrode of sodium ion battery , 2013 .

[24]  Gerhard Lagaly,et al.  Grafted organic derivatives of kaolinite: II. Intercalation of primary n-alkylamines and delamination , 2005, Clay Minerals.

[25]  Hua Zhao,et al.  Glymes as Versatile Solvents for Chemical Reactions and Processes: from the Laboratory to Industry. , 2014, RSC advances.

[26]  W. Goddard,et al.  Origin of low sodium capacity in graphite and generally weak substrate binding of Na and Mg among alkali and alkaline earth metals , 2016, Proceedings of the National Academy of Sciences.

[27]  M. Fouletier,et al.  Electrochemical intercalation of sodium in graphite , 1988 .

[28]  Petr Novák,et al.  In Situ Investigation of the Electrochemical Reduction of Carbonate Electrolyte Solutions at Graphite Electrodes , 1998 .

[29]  P. Novák,et al.  Online Detection of Reductive CO2 Development at Graphite Electrodes in the 1 M LiPF6, EC:DMC Battery Electrolyte , 2008 .

[30]  Kazuma Gotoh,et al.  Structure and Dynamic Behavior of Sodium–Diglyme Complex in the Graphite Anode of Sodium Ion Battery by 2H Nuclear Magnetic Resonance , 2016 .

[31]  K. Kang,et al.  Sodium Storage Behavior in Natural Graphite using Ether‐based Electrolyte Systems , 2015 .

[32]  M. Watanabe,et al.  Dissociation and Diffusion of Glyme-Sodium Bis(trifluoromethanesulfonyl)amide Complexes in Hydrofluoroether-Based Electrolytes for Sodium Batteries , 2016 .

[33]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[34]  Parr,et al.  Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. , 1988, Physical review. B, Condensed matter.

[35]  S. Grimme,et al.  A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. , 2010, The Journal of chemical physics.

[36]  O. Keles,et al.  RETRACTED: The use of well-aligned composite nanorod arrays as anode material for lithium rechargeable batteries , 2014 .

[37]  Philipp Adelhelm,et al.  Use of graphite as a highly reversible electrode with superior cycle life for sodium-ion batteries by making use of co-intercalation phenomena. , 2014, Angewandte Chemie.

[38]  A. Becke,et al.  Density-functional exchange-energy approximation with correct asymptotic behavior. , 1988, Physical review. A, General physics.

[39]  Petr Novák,et al.  SEI film formation on highly crystalline graphitic materials in lithium-ion batteries , 2006 .

[40]  Petr Novák,et al.  A Dilatometric Study of Lithium Intercalation into Powder-Type Graphite Electrodes , 2008 .

[41]  T. H. Dunning Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen , 1989 .

[42]  Adam P. Cohn,et al.  Ultrafast Solvent-Assisted Sodium Ion Intercalation into Highly Crystalline Few-Layered Graphene. , 2016, Nano letters.

[43]  D. Kuroda,et al.  Solvation Structure and Concentration in Glyme-Based Sodium Electrolytes: A Combined Spectroscopic and Computational Study , 2016 .

[44]  Petr Novák,et al.  On the correlation between electrode expansion and cycling stability of graphite/Si electrodes for Li-ion batteries , 2016 .

[45]  J. Janek,et al.  Kinetics and Degradation Processes of CuO as Conversion Electrode for Sodium-Ion Batteries: An Electrochemical Study Combined with Pressure Monitoring and DEMS , 2017 .

[46]  U. Stimming,et al.  Intercalation of solvated Na-ions into graphite , 2017 .

[47]  Anna G. Stefanopoulou,et al.  Expansion of Lithium Ion Pouch Cell Batteries: Observations from Neutron Imaging , 2013 .

[48]  Donghan Kim,et al.  Sodium‐Ion Batteries , 2013 .

[49]  Philipp Adelhelm,et al.  From lithium to sodium: cell chemistry of room temperature sodium–air and sodium–sulfur batteries , 2015, Beilstein journal of nanotechnology.

[50]  Teófilo Rojo,et al.  Na-ion batteries, recent advances and present challenges to become low cost energy storage systems , 2012 .

[51]  Liquan Chen,et al.  Room-temperature stationary sodium-ion batteries for large-scale electric energy storage , 2013 .

[52]  K. Kang,et al.  A comparative study of graphite electrodes using the co-intercalation phenomenon for rechargeable Li, Na and K batteries. , 2016, Chemical communications.

[53]  Philipp Adelhelm,et al.  Room-temperature sodium-ion batteries: Improving the rate capability of carbon anode materials by templating strategies , 2011 .

[54]  H. Gasteiger,et al.  Gas Evolution at Graphite Anodes Depending on Electrolyte Water Content and SEI Quality Studied by On-Line Electrochemical Mass Spectrometry , 2015 .

[55]  A. Kuwabara,et al.  Why is sodium-intercalated graphite unstable? , 2017 .

[56]  K. Edström,et al.  Surface Layer Evolution on Graphite During Electrochemical Sodium-tetraglyme Co-intercalation. , 2017, ACS applied materials & interfaces.

[57]  G. F. Ortiz,et al.  Treasure Na-ion anode from trash coke by adept electrolyte selection , 2017 .

[58]  K. Kang,et al.  Conditions for Reversible Na Intercalation in Graphite: Theoretical Studies on the Interplay Among Guest Ions, Solvent, and Graphite Host , 2017 .

[59]  Prasant Kumar Nayak,et al.  From Lithium-Ion to Sodium-Ion Batteries: Advantages, Challenges, and Surprises. , 2018, Angewandte Chemie.

[60]  J. Ryu,et al.  The Role of Metallic Fe and Carbon Matrix in Fe2O3 / Fe / Carbon Nanocomposite for Lithium-Ion Batteries , 2010 .

[61]  P. Novák,et al.  Dilatometric Investigations of Graphite Electrodes in Nonaqueous Lithium Battery Electrolytes , 2000 .

[62]  M. Winter,et al.  X-ray diffraction studies of the electrochemical intercalation of bis(trifluoromethanesulfonyl)imide anions into graphite for dual-ion cells , 2013 .

[63]  Erik J. Berg,et al.  Effects of Solvent, Lithium Salt, and Temperature on Stability of Carbonate-Based Electrolytes for 5.0 V LiNi0.5Mn1.5O4 Electrodes , 2016 .

[64]  K. Burke,et al.  Generalized Gradient Approximation Made Simple [Phys. Rev. Lett. 77, 3865 (1996)] , 1997 .

[65]  H. Monkhorst,et al.  SPECIAL POINTS FOR BRILLOUIN-ZONE INTEGRATIONS , 1976 .

[66]  V. Presser,et al.  Carbons and Electrolytes for Advanced Supercapacitors , 2014, Advanced materials.

[67]  Hafner,et al.  Ab initio molecular-dynamics simulation of the liquid-metal-amorphous-semiconductor transition in germanium. , 1994, Physical review. B, Condensed matter.

[68]  M. Winter,et al.  In Situ Dilatometric Study of the Binder Influence on the Electrochemical Intercalation of Bis(trifluoromethanesulfonyl) imide Anions into Graphite , 2017 .

[69]  Zhiqiang Zhu,et al.  Highly stable and ultrafast electrode reaction of graphite for sodium ion batteries , 2015 .

[70]  W. Henderson,et al.  LiClO4 Electrolyte Solvate Structures , 2004 .

[71]  Chenglong Zhao,et al.  Recent advances of electrode materials for low-cost sodium-ion batteries towards practical application for grid energy storage , 2017 .

[72]  Florian Weigend,et al.  Auxiliary basis sets for main row atoms and transition metals and their use to approximate Coulomb potentials , 1997 .

[73]  S. Jung,et al.  Origin of excellent rate and cycle performance of Na+-solvent cointercalated graphite vs. poor performance of Li+-solvent case , 2017 .

[74]  Hyunchul Kim,et al.  Sodium intercalation chemistry in graphite , 2015 .

[75]  V. Presser,et al.  In situ electrochemical dilatometry of carbide-derived carbons , 2011 .

[76]  G. Kresse,et al.  From ultrasoft pseudopotentials to the projector augmented-wave method , 1999 .

[77]  P. Adelhelm,et al.  A comparative study on the impact of different glymes and their derivatives as electrolyte solvents for graphite co-intercalation electrodes in lithium-ion and sodium-ion batteries. , 2016, Physical chemistry chemical physics : PCCP.

[78]  Blöchl,et al.  Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.