Using MinION nanopore sequencing to generate a de novo eukaryotic draft genome: preliminary physiological and genomic description of the extremophilic red alga Galdieria sulphuraria strain SAG 107.79

We report here the de novo assembly of a eukaryotic genome using only MinION nanopore DNA sequence data by examining a novel Galdieria sulphuraria genome: strain SAG 107.79. This extremophilic red alga was targeted for full genome sequencing as we found that it could grow on a wide variety of carbon sources and could uptake several precious and rare-earth metals, which places it as an interesting biological target for disparate industrial biotechnological uses. Phylogenetic analysis clearly places this as a species of G. sulphuraria. Here we additionally show that the genome assembly generated via nanopore long read data was of a high quality with regards to low total number of contiguous DNA sequences and long length of assemblies. Collectively, the MinION platform looks to rival other competing approaches for de novo genome acquisition with available informatics tools for assembly. The genome assembly is publically released as NCBI BioProject PRJNA330791. Further work is needed to reduce small insertion-deletion errors, relative to short-read assemblies.

[1]  S. M. Henkanatte-Gedera,et al.  Removal of dissolved organic carbon and nutrients from urban wastewaters by Galdieria sulphuraria: Laboratory to field scale demonstration , 2017 .

[2]  K. Inagaki,et al.  Effective and selective recovery of gold and palladium ions from metal wastewater using a sulfothermophilic red alga, Galdieria sulphuraria. , 2016, Bioresource technology.

[3]  Heng Li,et al.  Minimap and miniasm: fast mapping and de novo assembly for noisy long sequences , 2015, Bioinform..

[4]  P. Lammers,et al.  Feasibility of algal systems for sustainable wastewater treatment , 2015 .

[5]  Michael F. Seidl,et al.  Single-Molecule Real-Time Sequencing Combined with Optical Mapping Yields Completely Finished Fungal Genome , 2015, mBio.

[6]  S. M. Henkanatte-Gedera,et al.  Algal-based, single-step treatment of urban wastewaters. , 2015, Bioresource technology.

[7]  Sen-Lin Tang,et al.  Analysis of rbcL sequences reveals the global biodiversity, community structure, and biogeographical pattern of thermoacidophilic red algae (Cyanidiales) , 2015, Journal of phycology.

[8]  N. Loman,et al.  A complete bacterial genome assembled de novo using only nanopore sequencing data , 2015, Nature Methods.

[9]  Benedict Paten,et al.  Improved data analysis for the MinION nanopore sequencer , 2015, Nature Methods.

[10]  M. Zytnicki,et al.  Genome expansion of Arabis alpina linked with retrotransposition and reduced symmetric DNA methylation , 2015, Nature Plants.

[11]  Michael C. Schatz,et al.  Oxford Nanopore Sequencing, Hybrid Error Correction, and de novo Assembly of a Eukaryotic Genome , 2015 .

[12]  K. Inagaki,et al.  Recovery of rare earth elements from the sulfothermophilic red alga Galdieria sulphuraria using aqueous acid , 2014, Applied Microbiology and Biotechnology.

[13]  C. Ciniglia,et al.  Cyanidiophyceae in Iceland: plastid rbcL gene elucidates origin and dispersal of extremophilic Galdieria sulphuraria and G. maxima (Galdieriaceae, Rhodophyta) , 2014 .

[14]  D. Holmes,et al.  Metal resistance in acidophilic microorganisms and its significance for biotechnologies , 2014, Applied Microbiology and Biotechnology.

[15]  P. Lammers,et al.  Evaluation of a thermo-tolerant acidophilic alga, Galdieria sulphuraria, for nutrient removal from urban wastewaters. , 2014, Bioresource technology.

[16]  A. J. Hunt,et al.  Supported Palladium Nanoparticles Synthesized by Living Plants as a Catalyst for Suzuki-Miyaura Reactions , 2014, PloS one.

[17]  M. Lercher,et al.  Horizontal gene acquisitions by eukaryotes as drivers of adaptive evolution , 2014, BioEssays : news and reviews in molecular, cellular and developmental biology.

[18]  R. Castenholz,et al.  Cyanidiales diversity in Yellowstone National Park , 2013, Letters in applied microbiology.

[19]  A. Weber,et al.  Adaptation through horizontal gene transfer in the cryptoendolithic red alga Galdieria phlegrea , 2013, Current Biology.

[20]  J. Banfield,et al.  Gene Transfer from Bacteria and Archaea Facilitated Evolution of an Extremophilic Eukaryote , 2013, Science.

[21]  M. A. Nicolai,et al.  Microalgae as human food: chemical and nutritional characteristics of the thermo-acidophilic microalga Galdieria sulphuraria. , 2013, Food & function.

[22]  M. Schatz,et al.  Hybrid error correction and de novo assembly of single-molecule sequencing reads , 2012, Nature Biotechnology.

[23]  Sergey I. Nikolenko,et al.  SPAdes: A New Genome Assembly Algorithm and Its Applications to Single-Cell Sequencing , 2012, J. Comput. Biol..

[24]  Dirk Husmeier,et al.  TOPALi v2: a rich graphical interface for evolutionary analyses of multiple alignments on HPC clusters and multi-core desktops , 2008, Bioinform..

[25]  A. Hall,et al.  Plant Methods Protocol: Streamlined Sub-protocols for Floral-dip Transformation and Selection of Transformants in Arabidopsis Thaliana , 2022 .

[26]  A. Weber,et al.  Functional Characterization of the Plastidic Phosphate Translocator Gene Family from the Thermo-Acidophilic Red Alga Galdieria sulphuraria Reveals Specific Adaptations of Primary Carbon Partitioning in Green Plants and Red Algae1[W][OA] , 2008, Plant Physiology.

[27]  R. Castenholz,et al.  Biogeographic and Phylogenetic Diversity of Thermoacidophilic Cyanidiales in Yellowstone National Park, Japan, and New Zealand , 2008, Applied and Environmental Microbiology.

[28]  A. Weber,et al.  Redox regulation of chloroplast enzymes in Galdieria sulphuraria in view of eukaryotic evolution. , 2007, Plant & cell physiology.

[29]  J. Seckbach Algae and Cyanobacteria in Extreme Environments , 2007 .

[30]  J. M. Comeron,et al.  Establishment of endolithic populations of extremophilic Cyanidiales (Rhodophyta) , 2006, BMC Evolutionary Biology.

[31]  Mathieu Fourment,et al.  PATRISTIC: a program for calculating patristic distances and graphically comparing the components of genetic change , 2006, BMC Evolutionary Biology.

[32]  N. T. Eriksen,et al.  Heterotrophic high cell-density fed-batch cultures of the phycocyanin-producing red alga Galdieria sulphuraria. , 2005, Biotechnology and bioengineering.

[33]  A. Weber,et al.  Comparative Genomics of Two Closely Related Unicellular Thermo-Acidophilic Red Algae, Galdieria sulphuraria and Cyanidioschyzon merolae, Reveals the Molecular Basis of the Metabolic Flexibility of Galdieria sulphuraria and Significant Differences in Carbohydrate Metabolism of Both Algae1 , 2005, Plant Physiology.

[34]  C. Ciniglia,et al.  Hidden biodiversity of the extremophilic Cyanidiales red algae , 2004, Molecular ecology.

[35]  A. Weber,et al.  EST-analysis of the thermo-acidophilic red microalga Galdieriasulphuraria reveals potential for lipid A biosynthesis and unveils the pathway of carbon export from rhodoplasts , 2004, Plant Molecular Biology.

[36]  G. Pinto,et al.  Molecular variation in Galdieria sulphuraria (Galdieri) Merola and its bearing on taxonomy , 2000, Hydrobiologia.

[37]  C. Ciniglia,et al.  The taxonomic position of Cyanidium, Cyanidioschyzon and Galdieria: an update , 2000, Hydrobiologia.

[38]  W. Koch Verzeichnis der Sammlung von Algenkulturen am Pflanzenphysiologischen Institut der Universität Göttingen , 2004, Archiv für Mikrobiologie.

[39]  R. Amils,et al.  Microbial Community Composition and Ecology of an Acidic Aquatic Environment: The Tinto River, Spain , 2000, Microbial Ecology.

[40]  W. Gross,et al.  Cryptoendolithic growth of the red alga Galdieria sulphuraria in volcanic areas , 1998 .

[41]  W. Gross,et al.  Heterotrophic Growth of Two Strains of the Acido-Thermophilic Red Alga Galdieria sulphuraria , 1995 .

[42]  D. Moreira,et al.  Characterization of two new thermoacidophilic microalgae: Genome organization and comparison with Galdieria sulphuraria , 1994 .

[43]  R. Taddei,et al.  Revision of Cyanidium caldarium. Three species of acidophilic algae , 1981 .

[44]  W. Koch,et al.  [LIST OF THE COLLECTION OF ALGAE CULTURES IN THE PFLANZENPHYSIOLOGISCHE INSTITUT DER UNIVERSITAET GOETTINGEN]. , 1964, Archiv fur Mikrobiologie.