ECJ then and now

ECJ is a mature and widely used evolutionary computation library with particular strengths in genetic programming, massive distributed computation, and coevolution. In Fall of 2016 we received a three-year NSF grant to expand ECJ into a toolkit with wide-ranging facilities designed to serve the broader metaheuristics community. This report discusses ECJ's history, capabilities, and architecture, then details our planned extensions and expansions.

[1]  Rich Caruana,et al.  Removing the Genetics from the Standard Genetic Algorithm , 1995, ICML.

[2]  Marc Parizeau,et al.  Genericity in Evolutionary Computation Software Tools: Principles and Case-study , 2006, Int. J. Artif. Intell. Tools.

[3]  Ian H. Witten,et al.  The WEKA data mining software: an update , 2009, SKDD.

[4]  Barry L. Nelson,et al.  Discrete Optimization via Simulation , 2015 .

[5]  Marco Dorigo,et al.  AntNet: Distributed Stigmergetic Control for Communications Networks , 1998, J. Artif. Intell. Res..

[6]  Maarten Keijzer,et al.  Evolving Objects: A General Purpose Evolutionary Computation Library , 2001, Artificial Evolution.

[7]  Enrique Alba,et al.  Algorithm::Evolutionary, a flexible Perl module for evolutionary computation , 2010, Soft Comput..

[8]  Fred W. Glover,et al.  Future paths for integer programming and links to artificial intelligence , 1986, Comput. Oper. Res..

[9]  John R. Koza,et al.  Genetic programming - on the programming of computers by means of natural selection , 1993, Complex adaptive systems.

[10]  Marco Dorigo,et al.  Optimization, Learning and Natural Algorithms , 1992 .

[11]  Helena Ramalhinho Dias Lourenço,et al.  Iterated Local Search , 2001, Handbook of Metaheuristics.

[12]  Antonio J. Nebro,et al.  Redesigning the jMetal Multi-Objective Optimization Framework , 2015, GECCO.

[13]  Dirk Thierens,et al.  Enhancing the Performance of Maximum-Likelihood Gaussian EDAs Using Anticipated Mean Shift , 2008, PPSN.

[14]  Anne Auger,et al.  GECCO'16 Black-Box Optimization Benchmarking Workshop (BBOB-2016): Workshop Chairs' Welcome Message , 2016, GECCO.

[15]  M. Resende,et al.  A probabilistic heuristic for a computationally difficult set covering problem , 1989 .

[16]  Sean Luke,et al.  Is the meta-EA a viable optimization method? , 2013, GECCO '13.

[17]  Ryszard S. Michalski,et al.  LEARNABLE EVOLUTION MODEL: Evolutionary Processes Guided by Machine Learning , 2004, Machine Learning.

[18]  Wojciech Jaskowski,et al.  Better GP benchmarks: community survey results and proposals , 2012, Genetic Programming and Evolvable Machines.

[19]  Conor Ryan,et al.  GP-Beagle: A Benchmarking Problem Repository for the Genetic Programming Community , 2000 .

[20]  Heinz Mühlenbein,et al.  The Equation for Response to Selection and Its Use for Prediction , 1997, Evolutionary Computation.

[21]  Sean Luke,et al.  Genetic Programming Produced Competitive Soccer Softbot Teams for RoboCup97 , 1998 .

[22]  C. Pipper,et al.  [''R"--project for statistical computing]. , 2008, Ugeskrift for laeger.

[23]  C. D. Gelatt,et al.  Optimization by Simulated Annealing , 1983, Science.

[24]  John Baxter,et al.  Local Optima Avoidance in Depot Location , 1981 .

[25]  Manuel López-Ibáñez,et al.  Ant colony optimization , 2010, GECCO '10.

[26]  Pablo Moscato,et al.  On Evolution, Search, Optimization, Genetic Algorithms and Martial Arts : Towards Memetic Algorithms , 1989 .

[27]  Nikolaus Hansen,et al.  Benchmarking a BI-population CMA-ES on the BBOB-2009 function testbed , 2009, GECCO '09.

[28]  Ben Paechter,et al.  A Framework for Distributed Evolutionary Algorithms , 2002, PPSN.

[29]  Leonardo Vanneschi,et al.  Genetic programming needs better benchmarks , 2012, GECCO '12.