TCPlp: System Design and Analysis of Full-Scale TCP in Low-Power Networks

Low power and lossy networks (LLNs) enable diverse applications integrating many embedded devices, often requiring interconnectivity between LLNs and existing TCP/IP networks. However, the sensor network community has been reluctant to adopt TCP, providing only highly simplified TCP implementations on sensor platforms and, instead, developing LLN-specific protocols to provide connectivity. We present a full-scale TCP implementation, based on the TCP protocol logic in FreeBSD, capable of operating over IEEE 802.15.4 within the memory constraints of Cortex-M0+ based platforms. We systematically investigate the behavior of a full-featured TCP implementation in the LLN setting. It provides a 5x to 40x improvement in throughput compared to prior studies. Moreover, we find that TCP is more robust in LLNs than studies of TCP over traditional WLANs would suggest. We empirically demonstrate that, in a lossy environment typical of LLNs, TCP can achieve power consumption comparable to CoAP, a representative LLN-specific reliability protocol. We discuss the potential role of TCP in sensor networks, observing that gateway-free, retransmission-based reliable transport would be an asset to sensor network applications. We conclude that TCP should have a place in the LLN architecture moving forward.

[1]  John Heidemann,et al.  RMST: reliable data transport in sensor networks , 2003, Proceedings of the First IEEE International Workshop on Sensor Network Protocols and Applications, 2003..

[2]  Sally Floyd,et al.  The NewReno Modification to TCP's Fast Recovery Algorithm , 2004, RFC.

[3]  Gaetano Borriello,et al.  Embedded computation meets the World Wide Web , 2000, Commun. ACM.

[4]  Carsten Bormann,et al.  The Constrained Application Protocol (CoAP) , 2014, RFC.

[5]  Adam Dunkels,et al.  Full TCP/IP for 8-bit architectures , 2003, MobiSys '03.

[6]  Adam Dunkels,et al.  Connecting Wireless Sensornets with TCP/IP Networks , 2004, WWIC.

[7]  Thiemo Voigt,et al.  Algorithm 2 : Max-queue length scheduling algorithm , 2015 .

[8]  Hongwei Zhang,et al.  Reliable bursty convergecast in wireless sensor networks , 2005, MobiHoc '05.

[9]  Brian N. Bershad,et al.  Protocol service decomposition for high-performance networking , 1994, SOSP '93.

[10]  David E. Culler,et al.  Telos: enabling ultra-low power wireless research , 2005, IPSN 2005. Fourth International Symposium on Information Processing in Sensor Networks, 2005..

[11]  David E. Culler,et al.  Bringing Full-Scale TCP to Low-Power Networks , 2018, SenSys.

[12]  Abdulmotaleb El Saddik,et al.  Wireless Sensor Network Transport Layer: State of the Art , 2008 .

[13]  Hyung-Sin Kim,et al.  DT-RPL: Diverse bidirectional traffic delivery through RPL routing protocol in low power and lossy networks , 2017, Comput. Networks.

[14]  Kris Steenhaut,et al.  Evaluation of constrained application protocol for wireless sensor networks , 2011, 2011 18th IEEE Workshop on Local & Metropolitan Area Networks (LANMAN).

[15]  David E. Culler,et al.  System Design for a Synergistic, Low Power Mote/BLE Embedded Platform , 2016, 2016 15th ACM/IEEE International Conference on Information Processing in Sensor Networks (IPSN).

[16]  Matthew Mathis,et al.  Automatic TCP buffer tuning , 1998, SIGCOMM '98.

[17]  Robert Szewczyk,et al.  System architecture directions for networked sensors , 2000, ASPLOS IX.

[18]  Carsten Bormann,et al.  CoAP: An Application Protocol for Billions of Tiny Internet Nodes , 2012, IEEE Internet Computing.

[19]  Andreas Terzis,et al.  Design and evaluation of a versatile and efficient receiver-initiated link layer for low-power wireless , 2010, SenSys '10.

[20]  Van Jacobson,et al.  Congestion avoidance and control , 1988, SIGCOMM '88.

[21]  Deborah Estrin,et al.  A wireless sensor network For structural monitoring , 2004, SenSys '04.

[22]  QUTdN QeO,et al.  Random early detection gateways for congestion avoidance , 1993, TNET.

[23]  Victor C. M. Leung,et al.  Reliable data transport and congestion control in wireless sensor networks , 2007, Int. J. Sens. Networks.

[24]  Larry L. Peterson,et al.  Fbufs: a high-bandwidth cross-domain transfer facility , 1994, SOSP '93.

[25]  Mario Gerla,et al.  TCP performance in wireless multi-hop networks , 1999, Proceedings WMCSA'99. Second IEEE Workshop on Mobile Computing Systems and Applications.

[26]  Yueming Hu,et al.  Issues of transport control protocols for wireless sensor networks , 2005, Proceedings. 2005 International Conference on Communications, Circuits and Systems, 2005..

[27]  Alexander Afanasyev,et al.  Host-to-Host Congestion Control for TCP , 2010, IEEE Communications Surveys & Tutorials.

[28]  David E. Culler,et al.  Towards a Sensor Network Architecture: Lowering the Waistline , 2005, HotOS.

[29]  David E. Culler,et al.  Versatile low power media access for wireless sensor networks , 2004, SenSys '04.

[30]  Saverio Mascolo,et al.  Performance evaluation and comparison of Westwood+, New Reno, and Vegas TCP congestion control , 2004, CCRV.

[31]  Yousef A. Khalidi,et al.  An Efficient Zero-Copy I/O Framework for UNIX , 1995 .

[32]  Carsten Bormann,et al.  Block-Wise Transfers in the Constrained Application Protocol (CoAP) , 2016, RFC.

[33]  Thomas C. Schmidt,et al.  RIOT OS: Towards an OS for the Internet of Things , 2013, 2013 IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS).

[34]  David L. Black,et al.  The Addition of Explicit Congestion Notification (ECN) to IP , 2001, RFC.

[35]  James Won-Ki Hong,et al.  An efficient and lightweight embedded Web server for Web-based network element management , 2000, Int. J. Netw. Manag..

[36]  T. V. Lakshman,et al.  The performance of TCP/IP for networks with high bandwidth-delay products and random loss , 1997, TNET.

[37]  David E. Culler,et al.  A transmission control scheme for media access in sensor networks , 2001, MobiCom '01.

[38]  Prabal Dutta,et al.  The Internet of Things Has a Gateway Problem , 2015, HotMobile.

[39]  David E. Culler,et al.  Transmission of IPv6 Packets over IEEE 802.15.4 Networks , 2007, RFC.

[40]  Sally Floyd,et al.  TCP and explicit congestion notification , 1994, CCRV.

[41]  Dirk Pesch,et al.  Constrained Application Protocol for Low Power Embedded Networks: A Survey , 2012, 2012 Sixth International Conference on Innovative Mobile and Internet Services in Ubiquitous Computing.

[42]  Adam Dunkels,et al.  Contiki - a lightweight and flexible operating system for tiny networked sensors , 2004, 29th Annual IEEE International Conference on Local Computer Networks.

[43]  Shashidhar Gandham,et al.  STCP: a generic transport layer protocol for wireless sensor networks , 2005, Proceedings. 14th International Conference on Computer Communications and Networks, 2005. ICCCN 2005..

[44]  Matthias Kovatsch,et al.  Californium: Scalable cloud services for the Internet of Things with CoAP , 2014, 2014 International Conference on the Internet of Things (IOT).

[45]  Donald F. Towsley,et al.  Modeling TCP throughput: a simple model and its empirical validation , 1998, SIGCOMM '98.

[46]  Chieh-Yih Wan,et al.  CODA: congestion detection and avoidance in sensor networks , 2003, SenSys '03.

[47]  Christoph Meinel,et al.  Enabling En-Route Filtering for End-to-End Encrypted CoAP Messages , 2017, SenSys.

[48]  JeongGil Ko,et al.  MEDiSN: Medical emergency detection in sensor networks , 2010, TECS.

[49]  H. Balakrishnan,et al.  Mitigating congestion in wireless sensor networks , 2004, SenSys '04.

[50]  Philip Levis,et al.  Collection tree protocol , 2009, SenSys '09.

[51]  August Betzler,et al.  CoAP congestion control for the internet of things , 2016, IEEE Communications Magazine.

[52]  Matthew Mathis,et al.  The macroscopic behavior of the TCP congestion avoidance algorithm , 1997, CCRV.

[53]  Fernando Gont,et al.  On the Implementation of the TCP Urgent Mechanism , 2011, RFC.

[54]  Randall R. Stewart,et al.  Improving TCP's Robustness to Blind In-Window Attacks , 2010, RFC.

[55]  Mei-Ling Chiang,et al.  LyraNET: a zero-copy TCP/IP protocol stack for embedded operating systems , 2005, 11th IEEE International Conference on Embedded and Real-Time Computing Systems and Applications (RTCSA'05).

[56]  Adam Dunkels,et al.  Lossy links, low power, high throughput , 2011, SenSys.

[57]  David E. Culler,et al.  System Architecture Directions for Post-SoC/32-bit Networked Sensors , 2018, SenSys.

[58]  Saewoong Bahk,et al.  A measurement study of TCP over RPL in low-power and lossy networks , 2015, Journal of Communications and Networks.

[59]  David E. Culler,et al.  Hamilton: a cost-effective, low power networked sensor for indoor environment monitoring , 2017, BuildSys@SenSys.

[60]  Özgür B. Akan,et al.  ESRT: event-to-sink reliable transport in wireless sensor networks , 2003, MobiHoc '03.

[61]  David E. Culler,et al.  Flush: a reliable bulk transport protocol for multihop wireless networks , 2007, SenSys '07.

[62]  Qiang Wang,et al.  Low Power or High Performance? A Tradeoff Whose Time Has Come (and Nearly Gone) , 2012, EWSN.

[63]  Patrick Maillé,et al.  TCP over Low-Power and Lossy Networks: Tuning the Segment Size to Minimize Energy Consumption , 2010, 2011 4th IFIP International Conference on New Technologies, Mobility and Security.

[64]  Choong Seon Hong,et al.  CRRT: Congestion-Aware and Rate-Controlled Reliable Transport in Wireless Sensor Networks , 2009, IEICE Trans. Commun..

[65]  Chieh-Yih Wan,et al.  PSFQ: a reliable transport protocol for wireless sensor networks , 2002, WSNA '02.

[66]  Deborah Estrin,et al.  Mote Herding for Tiered Wireless Sensor Networks , 2005 .

[67]  David D. Clark,et al.  The structuring of systems using upcalls , 1985, SOSP '85.

[68]  Vidyasagar Potdar,et al.  Wireless Sensor Network transport protocol: A critical review , 2013, J. Netw. Comput. Appl..

[69]  David E. Culler,et al.  TinyOS: An Operating System for Sensor Networks , 2005, Ambient Intelligence.

[70]  Ramesh Govindan,et al.  RCRT: rate-controlled reliable transport for wireless sensor networks , 2007, SenSys '07.

[71]  Xiaoran Jiang,et al.  TCP over 6LoWPAN for Industrial Applications: An Experimental Study , 2011, 2011 4th IFIP International Conference on New Technologies, Mobility and Security.

[72]  Mani B. Srivastava,et al.  Disentangling wireless sensing from mesh networking , 2010, HotEmNets.

[73]  David D. Clark,et al.  An analysis of TCP processing overhead , 1988, IEEE Communications Magazine.

[74]  JeongGil Ko,et al.  MarketNet: An Asymmetric Transmission Power-based Wireless System for Managing e-Price Tags in Markets , 2015, SenSys.

[75]  David E. Culler,et al.  IP is dead, long live IP for wireless sensor networks , 2008, SenSys '08.

[76]  Van Jacobson,et al.  TCP Extensions for High Performance , 1992, RFC.

[77]  Lixia Zhang,et al.  Why TCP timers don't work well , 1986, SIGCOMM '86.

[78]  Davide Italiano,et al.  Calloutng : a new infrastructure for timer facilities in the FreeBSD kernel , 2013 .

[79]  Hyggo Oliveira de Almeida,et al.  A personal connected health system for the Internet of Things based on the Constrained Application Protocol , 2015, Comput. Electr. Eng..

[80]  Jim Kurose,et al.  Computer Networking: A Top-Down Approach (6th Edition) , 2007 .

[81]  Brian N. Bershad,et al.  Lightweight remote procedure call , 1989, TOCS.

[82]  Srinivasan Seshan,et al.  Improving TCP/IP performance over wireless networks , 1995, MobiCom '95.

[83]  David E. Culler,et al.  TOSSIM: accurate and scalable simulation of entire TinyOS applications , 2003, SenSys '03.

[84]  Michele Zorzi,et al.  Web Services for the Internet of Things through CoAP and EXI , 2011, 2011 IEEE International Conference on Communications Workshops (ICC).

[85]  Nirwan Ansari,et al.  Tcp performance enhancement in wireless networks via adaptive congestion control and active queue management , 2005 .

[86]  Adam Dunkels,et al.  Making TCP/IP Viable for Wireless Sensor Networks , 2004 .

[87]  Sally Floyd,et al.  Simulation-based comparisons of Tahoe, Reno and SACK TCP , 1996, CCRV.

[88]  Thomas Watteyne,et al.  Orchestra: Robust Mesh Networks Through Autonomously Scheduled TSCH , 2015, SenSys.

[89]  Adam Dunkels,et al.  Approaching the Maximum 802.15.4 Multi-hop Throughput , 2008 .