Alternating Back-Propagation for Generator Network

This paper proposes an alternating back-propagation algorithm for learning the generator network model. The model is a non-linear generalization of factor analysis. In this model, the mapping from the continuous latent factors to the observed signal is parametrized by a convolutional neural network. The alternating back-propagation algorithm iterates the following two steps: (1) Inferential back-propagation, which infers the latent factors by Langevin dynamics or gradient descent. (2) Learning back-propagation, which updates the parameters given the inferred latent factors by gradient descent. The gradient computations in both steps are powered by back-propagation, and they share most of their code in common. We show that the alternating back-propagation algorithm can learn realistic generator models of natural images, video sequences, and sounds. Moreover, it can also be used to learn from incomplete or indirect training data.

[1]  Max Welling,et al.  Auto-Encoding Variational Bayes , 2013, ICLR.

[2]  Song-Chun Zhu,et al.  Statistical Modeling and Conceptualization of Visual Patterns , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[3]  Yoshua Bengio,et al.  Generative Adversarial Nets , 2014, NIPS.

[4]  Song-Chun Zhu,et al.  Modeling textured motion : particle, wave and sketch , 2003, Proceedings Ninth IEEE International Conference on Computer Vision.

[5]  Tianqi Chen,et al.  Empirical Evaluation of Rectified Activations in Convolutional Network , 2015, ArXiv.

[6]  Roger A. Sugden,et al.  Multiple Imputation for Nonresponse in Surveys , 1988 .

[7]  Xiaogang Wang,et al.  Deep Learning Face Attributes in the Wild , 2014, 2015 IEEE International Conference on Computer Vision (ICCV).

[8]  Patrick Seemann,et al.  Matrix Factorization Techniques for Recommender Systems , 2014 .

[9]  S T Roweis,et al.  Nonlinear dimensionality reduction by locally linear embedding. , 2000, Science.

[10]  Jérôme Idier,et al.  Algorithms for Nonnegative Matrix Factorization with the β-Divergence , 2010, Neural Computation.

[11]  Michael J. Black,et al.  Fields of Experts: a framework for learning image priors , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[12]  Sergey Ioffe,et al.  Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift , 2015, ICML.

[13]  Andrea Vedaldi,et al.  MatConvNet: Convolutional Neural Networks for MATLAB , 2014, ACM Multimedia.

[14]  Geoffrey E. Hinton,et al.  ImageNet classification with deep convolutional neural networks , 2012, Commun. ACM.

[15]  Yoshua Bengio,et al.  Gradient-based learning applied to document recognition , 1998, Proc. IEEE.

[16]  Yang Lu,et al.  A Theory of Generative ConvNet , 2016, ICML.

[17]  Michael I. Jordan,et al.  Graphical Models, Exponential Families, and Variational Inference , 2008, Found. Trends Mach. Learn..

[18]  D. Rubin,et al.  Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .

[19]  Razvan Pascanu,et al.  On the number of inference regions of deep feed forward networks with piece-wise linear activations , 2013, ICLR.

[20]  Honglak Lee,et al.  Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations , 2009, ICML '09.

[21]  Yee Whye Teh,et al.  A Fast Learning Algorithm for Deep Belief Nets , 2006, Neural Computation.

[22]  M. Girolami,et al.  Riemann manifold Langevin and Hamiltonian Monte Carlo methods , 2011, Journal of the Royal Statistical Society: Series B (Statistical Methodology).

[23]  Leon A. Gatys,et al.  A Neural Algorithm of Artistic Style , 2015, ArXiv.

[24]  Thomas Brox,et al.  Learning to generate chairs with convolutional neural networks , 2014, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[25]  Karol Gregor,et al.  Neural Variational Inference and Learning in Belief Networks , 2014, ICML.

[26]  H. Sebastian Seung,et al.  Algorithms for Non-negative Matrix Factorization , 2000, NIPS.

[27]  Alex Graves,et al.  DRAW: A Recurrent Neural Network For Image Generation , 2015, ICML.

[28]  Eero P. Simoncelli,et al.  Article Sound Texture Perception via Statistics of the Auditory Periphery: Evidence from Sound Synthesis , 2022 .

[29]  Yoshua Bengio,et al.  NICE: Non-linear Independent Components Estimation , 2014, ICLR.

[30]  Soumith Chintala,et al.  Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks , 2015, ICLR.

[31]  Jiquan Ngiam,et al.  Learning Deep Energy Models , 2011, ICML.

[32]  Yoshua Bengio,et al.  Early Inference in Energy-Based Models Approximates Back-Propagation , 2015, ArXiv.

[33]  Rob Fergus,et al.  Deep Generative Image Models using a Laplacian Pyramid of Adversarial Networks , 2015, NIPS.

[34]  Yoshua Bengio,et al.  Extracting and composing robust features with denoising autoencoders , 2008, ICML '08.

[35]  Samy Bengio,et al.  Density estimation using Real NVP , 2016, ICLR.

[36]  David J. Field,et al.  Sparse coding with an overcomplete basis set: A strategy employed by V1? , 1997, Vision Research.

[37]  Radford M. Neal MCMC Using Hamiltonian Dynamics , 2011, 1206.1901.

[38]  P. Paatero,et al.  Positive matrix factorization: A non-negative factor model with optimal utilization of error estimates of data values† , 1994 .

[39]  Emmanuel J. Candès,et al.  Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information , 2004, IEEE Transactions on Information Theory.

[40]  Song-Chun Zhu,et al.  Minimax Entropy Principle and Its Application to Texture Modeling , 1997, Neural Computation.

[41]  Hyunsoo Kim,et al.  Nonnegative Matrix Factorization Based on Alternating Nonnegativity Constrained Least Squares and Active Set Method , 2008, SIAM J. Matrix Anal. Appl..

[42]  Erkki Oja,et al.  Independent Component Analysis , 2001 .

[43]  Yee Whye Teh,et al.  Bayesian Learning via Stochastic Gradient Langevin Dynamics , 2011, ICML.

[44]  Geoffrey E. Hinton,et al.  Deep Boltzmann Machines , 2009, AISTATS.

[45]  Dorothy T. Thayer,et al.  EM algorithms for ML factor analysis , 1982 .

[46]  Daan Wierstra,et al.  Stochastic Backpropagation and Approximate Inference in Deep Generative Models , 2014, ICML.

[47]  Geoffrey E. Hinton,et al.  The "wake-sleep" algorithm for unsupervised neural networks. , 1995, Science.

[48]  Razvan Pascanu,et al.  On the Number of Linear Regions of Deep Neural Networks , 2014, NIPS.

[49]  Ying Nian Wu,et al.  Generative Modeling of Convolutional Neural Networks , 2014, ICLR.

[50]  Rob Fergus,et al.  Visualizing and Understanding Convolutional Neural Networks , 2013 .

[51]  Koray Kavukcuoglu,et al.  Pixel Recurrent Neural Networks , 2016, ICML.

[52]  Stefano Soatto,et al.  Dynamic Textures , 2003, International Journal of Computer Vision.

[53]  Graham W. Taylor,et al.  Adaptive deconvolutional networks for mid and high level feature learning , 2011, 2011 International Conference on Computer Vision.

[54]  Andrew L. Maas Rectifier Nonlinearities Improve Neural Network Acoustic Models , 2013 .

[55]  D. Rubin Multiple imputation for nonresponse in surveys , 1989 .

[56]  D. Rubin,et al.  Parameter expansion to accelerate EM: The PX-EM algorithm , 1998 .

[57]  L. Younes On the convergence of markovian stochastic algorithms with rapidly decreasing ergodicity rates , 1999 .

[58]  Yang Lu,et al.  Learning FRAME Models Using CNN Filters , 2015, AAAI.