Large Scale Dynamics of Interacting Particles
暂无分享,去创建一个
Scales.- Outline.- I Classical Particles.- 1. Dynamics.- 1.1 Newtonian Dynamics.- 1.2 Boundary Conditions.- 1.3 Dynamics of Infinitely Many Particles.- 2. States of Equilibrium and Local Equilibrium.- 2.1 Equilibrium Measures, Correlation Functions.- 2.2 The Infinite Volume Limit.- 2.3 Local Equilibrium States.- 2.4 Local Stationarity.- 2.5 The Static Continuum Limit.- 3. The Hydrodynamic Limit.- 3.1 Propagation of Local Equilibrium.- 3.2 Hydrodynamic Equations.- 3.3 The Hard Rod Fluid.- 3.4 Steady States.- 4. Low Density Limit: The Boltzmann Equation.- 4.1 Low Density (Boltzmann-Grad) Limit.- 4.2 BBGKY Hierarchy for Hard Spheres and Collision Histories.- 4.3 Convergence of the Scaled Correlation Functions.- 4.4 The Boltzmann Hierarchy.- 4.5 Time Reversal.- 4.6 Law of Large Numbers, Local Poisson.- 4.7 The H-Function.- 4.8 Extensions.- 5. The Vlasov Equation.- 6. The Landau Equation.- 7. Time Correlations and Fluctuations.- 7.1 Fluctuation Fields.- 7.2 The Green-Kubo Formula.- 7.3 Transport for the Hard Rod Fluid.- 7.4 The Fluctuating Boltzmann Equation.- 7.5 The Fluctuating Vlasov Equation.- 8. Dynamics of a Tracer Particle.- 8.1 Brownian Particle in a Fluid.- 8.2 The Stationary Velocity Process.- 8.3 Brownian Motion (Hydrodynamic) Limit.- 8.4 Large Mass Limit.- 8.5 Weak Coupling Limit.- 8.6 Low Density Limit.- 8.7 Mean Field Limit.- 8.8 External Forces and the Einstein Relation.- 8.9 Self-Diffusion.- 8.10 Corrections to Markovian Limits.- 9. The Role of Probability, Irreversibility.- II Stochastic Lattice Gases.- 1. Lattice Gases with Hard Core Exclusion.- 1.1 Dynamics.- 1.2 Stochastic Reversibility.- 1.3 Invariant Measures, Ergodicity, Domains of Attraction.- 1.4 Driven Lattice Gases.- 1.5 Standard Models.- 2. Equilibrium Fluctuations.- 2.1 Density Correlations and Bulk Diffusion.- 2.2 The Green-Kubo Formula.- 2.3 Currents.- 2.4 The Gradient Condition.- 2.5 Linear Response, Conductivity.- 2.6 Steady State Transport.- 2.7 State of Minimal Entropy Production.- 2.8 Bounds on the Conductivity.- 2.9 The Field of Density Fluctuations.- 2.10 Scaling Limit for the Density Fluctuation Field (Proof).- 2.11 Critical Dynamics.- 3. Nonequilibrium Dynamics for Reversible Lattice Gases.- 3.1 The Nonlinear Diffusion Equation.- 3.2 Hydrodynamic Limit (Proof).- 3.3 Low Temperatures.- 3.4 Weakly Driven Lattice Gases.- 3.5 Nonequilibrium Fluctuations.- 3.6 Local Equilibrium States and Minimal Entropy Production.- 3.7 Large Deviations.- 4. Nonequilibrium Dynamics of Driven Lattice Gases.- 4.1 Hyperbolic Equation of Conservation Type.- 4.2 Asymmetric Exclusion Dynamics.- 4.3 Fluctuation Theory.- 5. Beyond the Hydrodynamic Time Scale.- 5.1 Navier-Stokes Correction for Driven Lattice Gases.- 5.2 Local Structure of a Shock.- 5.2.1 Macroscopic Equation with Fluctuations.- 5.2.2 Shock in a Random Frame of Reference.- 5.2.3 Shock in Higher Dimensions.- 6. Tracer Dynamics.- 6.1 Two Component Systems.- 6.2 Tracer Diffusion.- 6.3 Convergence to Brownian Motion.- 6.4 Nearest Neighbor Jumps in One Dimension: The Case of Vanishing Self-Diffusion.- 7. Stochastic Models with a Single Conservation Law Other than Lattice Gases.- 7.1 Lattice Gases Without Hard Core/Zero Range Dynamics.- 7.2 Interacting Brownian Particles.- 7.3 Ginzburg-Landau Dynamics.- 8. Non-Hydrodynamic Limit Dynamics.- 8.1 Kinetic Limit.- 8.2 Mean Field Limit.- References.- List of Mathematical Symbols.