Identification of Optimal Topography by Variational Data Assimilation

The use of data assimilation technique to identify optimal topography is discussed in frames of time-dependent motion governed by non-linear barotropic ocean model. Assimilation of artificially generated data allows to measure the influence of various error sources and to classify the impact of noise that is present in observational data and model parameters. The choice of assimilation window is discussed. Assimilating noisy data with longer windows provides higher accuracy of identified topography. The topography identified once by data assimilation can be successfully used for other model runs that start from other initial conditions and are situated in other parts of the model's attractor.

[1]  Frank O. Bryan,et al.  Parameter sensitivity of primitive equation ocean general circulation models , 1987 .

[2]  C. Nicolis,et al.  Short-range predict-ability of the atmosphere: mechanism for superexponential error growth , 1995 .

[3]  J. M. Lewis,et al.  The use of adjoint equations to solve a variational adjustment problem with advective constraints , 1985 .

[4]  Jacques Verron,et al.  Nudging satellite altimeter data into quasi‐geostrophic ocean models , 1992 .

[5]  P. Heimbach,et al.  Adjoint Sensitivity of an Ocean General Circulation Model to Bottom Topography , 2007 .

[6]  J. Molines,et al.  Assimilation of Topex/Poseidon altimeter data into a circulation model of the North Atlantic , 1994, Proceedings of OCEANS'94.

[7]  Sol Hellerman,et al.  Normal Monthly Wind Stress Over the World Ocean with Error Estimates , 1983 .

[8]  Jean-Marc Molines,et al.  Assimilation of TOPEX/POSEIDON altimeter data into a circulation model of the North Atlantic , 1994 .

[9]  Alistair Adcroft,et al.  How Sensitive are Coarse General Circulation Models to Fundamental Approximations in the Equations of Motion , 2003 .

[10]  F. L. Dimet,et al.  Variational algorithms for analysis and assimilation of meteorological observations: theoretical aspects , 1986 .

[11]  P. Courtier,et al.  Four-dimensional variational data assimilation using the adjoint of a multilevel primitive-equation model , 1991 .

[12]  J. Verron,et al.  How Topographic Smoothing Contributes to Differences between the Eddy Flows Simulated by Sigma- and Geopotential-Coordinate Models , 2002 .

[13]  Pierre Brasseur,et al.  A demonstration of ensemble-based assimilation methods with a layered OGCM from the perspective of operational ocean forecasting systems , 2003 .

[14]  S. Cohn,et al.  An Introduction to Estimation Theory , 1997 .

[15]  T. M. Chin,et al.  Ocean general circulation model sensitivity to forcing from scatterometer winds , 1999 .

[16]  W. Budgell,et al.  Ocean Data Assimilation and the Moan Filter: Spatial Regularity , 1987 .

[17]  G. I. Marchuk,et al.  Formulation of the theory of perturbations for complicated models , 1975 .

[18]  Eugenia Kalnay,et al.  Global Numerical Weather Prediction at the National Meteorological Center , 1990 .

[19]  J. Blum,et al.  A nudging-based data assimilation method: the Back and Forth Nudging (BFN) algorithm , 2008 .

[20]  W. R. Holland,et al.  Sensitivity of the tropical Atlantic circulation to specification of wind stress climatology , 1995 .

[21]  Claude Lemaréchal,et al.  Some numerical experiments with variable-storage quasi-Newton algorithms , 1989, Math. Program..

[22]  J. Verron,et al.  The no-slip condition and separation of western boundary currents , 1996 .

[23]  J. Lions,et al.  Contrôle optimal de systèmes gouvernés par des équations aux dérivées partielles , 1968 .

[24]  Eric Blayo,et al.  A Comparison of Two Numerical Methods for Integrating a Quasi-geostrophic Multilayer Model of Ocean Circulations , 1994 .

[25]  E. Kazantsev,et al.  Local Lyapunov exponents of the quasi-geostrophic ocean dynamics , 1999, Appl. Math. Comput..

[26]  C. Wunsch,et al.  Bottom Topography as a Control Variable in an Ocean Model , 2003 .

[27]  Alistair Adcroft,et al.  How slippery are piecewise‐constant coastlines in numerical ocean models? , 1998 .

[28]  M. Eby,et al.  Sensitivity of a Large-Scale Ocean Model to a Parameterization of Topographic Stress , 1994 .

[29]  William R. Holland,et al.  Baroclinic and topographic influences on the transport in western boundary currents , 1973 .