Topological Orders in (4+1)-Dimensions

We investigate the Morita equivalences of (4+1)-dimensional topological orders. We show that any (4+1)-dimensional super (fermionic) topological order admits a gapped boundary condition — in other words, all (4+1)-dimensional super topological orders are Morita trivial. As a result, there are no inherently gapless super (3+1)-dimensional theories. On the other hand, we show that there are infinitely many algebraically Morita-inequivalent bosonic (4+1)-dimensional topological orders.

[1]  Hao Zheng,et al.  Boundary-bulk relation in topological orders , 2017, Nuclear Physics B.

[2]  Zitao Wang,et al.  Fermionic symmetry protected topological phases and cobordisms , 2014, Journal of High Energy Physics.

[3]  Christopher L. Douglas,et al.  Fusion 2-categories and a state-sum invariant for 4-manifolds , 2018, 1812.11933.

[4]  THEO JOHNSON-FREYD,et al.  FUSION 2-CATEGORIES WITH NO LINE OPERATORS ARE GROUPLIKE , 2020, Bulletin of the Australian Mathematical Society.

[5]  V. Ostrik,et al.  On the structure of the Witt group of braided fusion categories , 2011, 1109.5558.

[6]  B. M. Fulk MATH , 1992 .

[7]  T. Johnson-Freyd,et al.  Symmetry protected topological phases and generalized cohomology , 2017, Journal of High Energy Physics.

[8]  Maximilian Kreuzer,et al.  The gravitational anomalies , 1990 .

[9]  Z. Gu,et al.  Towards a Complete Classification of Symmetry-Protected Topological Phases for Interacting Fermions in Three Dimensions and a General Group Supercohomology Theory , 2017, 1703.10937.

[10]  A. Kapustin,et al.  State sum constructions of spin-TFTs and string net constructions of fermionic phases of matter , 2016, 1605.01640.

[11]  X. Wen,et al.  Braided fusion categories, gravitational anomalies, and the mathematical framework for topological orders in any dimensions , 2014, 1405.5858.

[12]  X. Wen,et al.  Classification of 3+1D Bosonic Topological Orders (II): The Case When Some Pointlike Excitations Are Fermions , 2018, Physical Review X.

[13]  X. Wen Topological Orders in Rigid States * , 2022 .

[14]  On the classification of topological orders , 2020, 2003.06663.

[15]  Matthew Yu Symmetries and anomalies of (1+1)d theories: 2-groups and symmetry fractionalization , 2020, Journal of High Energy Physics.

[16]  X. Wen A theory of 2+1D bosonic topological orders , 2015, 1506.05768.

[17]  C. Nayak,et al.  Cheshire charge in (3+1)-dimensional topological phases , 2017, 1702.02148.

[18]  M. Hastings,et al.  Disentangling the Generalized Double Semion Model , 2019, Communications in Mathematical Physics.

[19]  T. Deguchi,et al.  International Journal of Modern Physics B, ❢c World Scientific Publishing Company , 2001 .

[20]  P. Dall'Aglio The Journal of High Energy Physics , 2012 .

[21]  Dmitri Nikshych,et al.  Braided Picard groups and graded extensions of braided tensor categories , 2021, Selecta Mathematica.

[22]  Saunders MacLane,et al.  On the Groups H(Π, n), II: Methods of Computation , 1954 .

[23]  A. Davydov Twisted automorphisms of group algebras , 2007, 0708.2758.

[24]  David Reutter,et al.  Minimal nondegenerate extensions , 2021 .

[25]  Grey Giddins,et al.  Statistics , 2016, The Journal of hand surgery, European volume.

[26]  Hao Zheng,et al.  Boundary-bulk relation for topological orders as the functor mapping higher categories to their centers , 2015, 1502.01690.

[27]  X. Wen,et al.  Classification of (3+1)D Bosonic Topological Orders: The Case When Pointlike Excitations Are All Bosons , 2017, Physical Review X.