Deposit classification scheme for the Critical Minerals Mapping Initiative Global Geochemical Database

..........................................................................................................................................................1 Background.....................................................................................................................................................1 Australia .................................................................................................................................................1 Canada ....................................................................................................................................................3 United States .........................................................................................................................................3 Problem............................................................................................................................................................3 Approach .........................................................................................................................................................3 System Type (Genetically Related Features) ....................................................................................4 Deposit Environment ............................................................................................................................4 Deposit Group and Deposit Type ........................................................................................................4 Uses.........................................................................................................................................................5 References Cited..........................................................................................................................................43

[1]  M. Barton,et al.  Phanerozoic Iron-Oxide (-REE-Cu-Au-U ) Systems in Southwestern North America and Their Origins , 2000 .

[2]  J. R. Lang,et al.  Intrusion-related gold deposits associated with tungsten-tin provinces , 1999 .

[3]  F. A. McKeown,et al.  Rare-earth-bearing apatite at Mineville, Essex County, New York , 1956 .

[4]  Н. С. Бортников Редкоземельные и критические элементы в рудных месторождениях. Рецензия на книгу Rare earth and critical elements in ore deposits , 2017 .

[5]  M. Boni,et al.  The “Calamines” and the “Others”: The great family of supergene nonsulfide zinc ores , 2015 .

[6]  Richard J. Goldfarb,et al.  Integrated Methods for Discovery: Global Exploration in the Twenty-First Century , 2002 .

[7]  Richard W. Saltus,et al.  A deposit model for Mississippi Valley-Type lead-zinc ores: Chapter A in Mineral deposit models for resource assessment , 2010 .

[8]  G. Yumul The Acoje Block Platiniferous Dunite Horizon, Zambales Ophiolite Complex, Philippines: Melt Type and Associated Geochemical Controls , 2001 .

[9]  A. Ord,et al.  Mary Kathleen metamorphic-hydrothermal uranium - rare-earth element deposit: Ore genesis and numerical model of coupled deformation and fluid flow , 1999 .

[10]  M. Hannington,et al.  The minor element endowment of modern sea-floor massive sulfide deposits and comparison with deposits hosted in ancient volcanic successions , 2016 .

[11]  D. Singer,et al.  Podiform chromite deposits--database and grade and tonnage models , 2012 .

[12]  Suzanne D. Golding,et al.  Economic Geology and the Bulletin of the Society of Economic Geologists , 2006 .

[13]  R. C. Morris,et al.  Channel iron deposits of the Hamersley Province, Western Australia , 2003 .

[14]  A. C. B. Neto,et al.  Weathering of the Madeira world-class Sn-Nb-Ta (Cryolite, REE, U, Th) deposit, Pitinga Mine (Amazon, Brazil) , 2018 .

[15]  G. Orris Additional descriptive models of industrial mineral deposits , 1998 .

[16]  E. Anderson,et al.  Nickel-cobalt laterites: a deposit model: Chapter H in Mineral deposit models for resource assessment , 2013 .

[17]  D. A. John,et al.  Miocene and Early Pliocene Epithermal Gold-Silver Deposits in the Northern Great Basin, Western United States: Characteristics, Distribution, and Relationship to Magmatism , 2001 .

[18]  Robert R. Seal,et al.  A deposit model for carbonatite and peralkaline intrusion-related rare earth element deposits: Chapter J in Mineral deposit models for resource assessment , 2014 .

[19]  R. Keays,et al.  Formation of Ni–Cu–Platinum Group Element sulfide mineralization in the Sudbury Impact Melt Sheet , 2004 .

[20]  Ryan D. Taylor,et al.  Stratiform chromite deposit model: Chapter E in Mineral deposit models for resource assessment , 2012 .

[21]  M. Gadd,et al.  A Middle Devonian basin-scale precious metal enrichment event across northern Yukon (Canada) , 2020 .

[22]  Richard J. Goldfarb,et al.  Orogenic gold deposits : A proposed classification in the context of their crustal distribution and relationship to other gold deposit types , 1998 .

[23]  A. Koschinsky,et al.  Discriminating between different genetic types of marine ferro-manganese crusts and nodules based on rare earth elements and yttrium , 2014 .

[24]  G. Simandl,et al.  Graphite deposit types , their origin , and economic signi fi cance , 2015 .

[25]  L. Woodruff,et al.  A deposit model for magmatic iron-titanium-oxide deposits related to Proterozoic massif anorthosite plutonic suites , 2013 .

[26]  P. Emsbo Geologic Criteria for the Assessment of Sedimentary Exhalative (Sedex) Zn-Pb-Ag Deposits , 2009 .

[27]  M. Granitto Global Geochemical Database for Critical Metals in Black Shales , 2017 .

[28]  J. D. Bliss,et al.  Gold-bearing skarns , 1991 .

[29]  L. Corriveau,et al.  Formation of albitite-hosted uranium within IOCG systems: the Southern Breccia, Great Bear magmatic zone, Northwest Territories, Canada , 2015, Mineralium Deposita.

[30]  S. Kissin Five-element (Ni-Co-As-Ag-Bi) Veins , 1992 .

[31]  C. Stern,et al.  The Giant El Teniente Breccia Deposit Hypogene Copper Distribution and Emplacement , 2002 .

[32]  G. Orris Industrial mineral deposit models; descriptive models for three lacustrine deposit types , 1992 .

[33]  H. Wada,et al.  Vein graphite deposits: geological settings, origin, and economic significance , 2014, Mineralium Deposita.

[34]  F. Pirajno,et al.  Review of geology, alteration and origin of iron oxide–apatite deposits in the Cretaceous Ningwu basin, Lower Yangtze River Valley, eastern China: Implications for ore genesis and geodynamic setting , 2011 .

[35]  J. D. Bliss Some industrial mineral deposit models : descriptive deposit models , 1991 .

[36]  Joseph Gambogi,et al.  Draft critical mineral list—Summary of methodology and background information—U.S. Geological Survey technical input document in response to Secretarial Order No. 3359 , 2018 .

[37]  M. Barton Iron Oxide(–Cu–Au–REE–P–Ag–U–Co) Systems , 2014 .

[38]  P. Emsbo,et al.  Fluid inclusion evidence for a genetic link between simple antimony veins and giant silver veins in the Coeur d'Alene mining district, ID and MT, USA , 2013 .

[39]  P. Acosta-Góngora,et al.  Genesis of the Paleoproterozoic NICO iron oxide–cobalt–gold–bismuth deposit, Northwest Territories, Canada: Evidence from isotope geochemistry and fluid inclusions , 2015 .

[40]  A. François,et al.  The Origin of the Kipushi (Cu, Zn, Pb) Deposit in Direct Relation with a Proterozoic Salt Diapir. Copperbelt of Central Africa, Shaba, Republic of Zaire , 1988 .

[41]  S. Dai,et al.  Enrichment of critical elements (Nb-Ta-Zr-Hf-REE) within coal and host rocks from the Datanhao mine, Daqingshan Coalfield, northern China , 2019, Ore Geology Reviews.

[42]  R. Ayuso,et al.  REE enrichment in granite-derived regolith deposits of the southeast United States: Prospective source rocks and accumulation processes , 2015 .

[43]  T. Mernagh,et al.  The Nolans Bore rare-earth element-phosphorus-uranium mineral system: geology, origin and post-depositional modifications , 2016, Mineralium Deposita.

[44]  C. K. Leith Secondary concentration of Lake Superior iron ores , 1931 .

[45]  Robert B. Finkelman,et al.  Metalliferous coals: A review of the main genetic and geochemical types , 2008 .

[46]  G. Bárdossy Karst Bauxites: Bauxite Deposits on Carbonate Rocks , 2013 .

[47]  K. Scott,et al.  Regolith expression of Australian ore systems : a compilation of exploration case histories with conceptual dispersion, process and exploration models , 2005 .

[48]  J. B. Maynard The Kalahari Manganese Field—The Adventure Continues. , 2013 .

[49]  B. S. Gosen,et al.  PLACER-TYPE RARE EARTH ELEMENT DEPOSITS , 2016 .

[50]  L. Monteiro,et al.  The link between hydrothermal nickel mineralization and an iron oxide-copper–gold (IOCG) system: Constraints based on mineral chemistry in the Jatobá deposit, Carajás Province , 2020 .

[51]  S. Simmons,et al.  Critical elements in Carlin, epithermal, and orogenic gold deposits , 2016 .

[52]  Robert F. Martin,et al.  THE PATTERNS OF ENRICHMENT IN FELSIC PEGMATITES ULTIMATELY DEPEND ON TECTONIC SETTING , 2005 .

[53]  R. Sillitoe Intrusion-related gold deposits , 1991 .

[54]  N. Oliver,et al.  Unconformity-Related Rare Earth Element Deposits: A Regional-Scale Hydrothermal Mineralization Type of Northern Australia , 2018, Economic Geology.

[55]  C. Barrie,et al.  Volcanogenic Massive Sulfide Occurrence Model , 2012 .

[56]  B. F. Leonard,et al.  Ore deposits of the St. Lawrence County magnetite district, northwest Adirondacks, New York , 1964 .

[57]  John L. Muntean The Carlin Gold System: Applications to Exploration in Nevada and Beyond , 2018 .

[58]  G. Simandl,et al.  Carbonate-hosted nonsulphide Zn–Pb mineralization of southern British Columbia, Canada , 2015, Mineralium Deposita.

[59]  J. Pastor,et al.  Primary mineralization in Nigerian ring complexes and its economic significance , 1985 .

[60]  L. Snee,et al.  Evidence for Proterozoic and Late Cretaceous-early Tertiary ore-forming events in the Coeur d'Alene District, Idaho and Montana , 1998 .

[61]  C. Stern,et al.  Magmatic Evolution of the Giant El Teniente Cu–Mo Deposit, Central Chile , 2011 .

[62]  F. Pirajno,et al.  The Magellan Pb deposit, Western Australia; a new category within the class of supergene non-sulphide mineral systems , 2010 .

[63]  M. Barton,et al.  Non-pegmatitic Deposits of Beryllium: Mineralogy, Geology, Phase Equilibria and Origin , 2002 .

[64]  M. Gordon,et al.  Geology of the Arkansas bauxite region , 1958 .

[65]  International geoscience collaboration to support critical mineral discovery , 2020, Fact Sheet.

[66]  J. Dostal Rare Metal Deposits Associated with Alkaline/Peralkaline Igneous Rocks , 2016 .

[67]  J. Hein,et al.  Ferromanganese Crusts and Nodules, Rocks that Grow , 2016 .

[68]  R. Sillitoe Porphyry Copper Systems , 2010 .

[69]  R. Hildebrand Kiruna-type Deposits: Their Origin and Relationship to Intermediate Subvolcanic Plutons in the Great Bear Magmatic Zone, Northwest Canada* , 1986 .

[70]  D. P. Cox,et al.  Descriptive model of Sn greisen deposits , 1986 .

[71]  F. Hughes Geology of the mineral deposits of Australia and Papua New Guinea , 1990 .

[72]  W. Verwoerd The mineralogy and genesis of the lead-zinc-vanadium deposit of Abenab West in the Otavi mountains, South West Africa , 1953 .

[73]  Shoji Arai,et al.  Mineralogy and Paragenesis of the Co-Ni Arsenide Ores of Bou Azzer, Anti-Atlas, Morocco , 2009 .

[74]  M. Barton,et al.  Time-Space Development of an External Brine-Dominated , Igneous-Driven Hydrothermal System : Humboldt Mafic Complex , Western Nevada , 2022 .

[75]  J. Sharp Cave Peak, a molybdenum-mineralized breccia pipe complex in Culberson County, Texas , 1979 .

[76]  W. Day The Earth Mapping Resources Initiative (Earth MRI): Mapping the Nation’s critical mineral resources , 2019, Fact Sheet.

[77]  T. Baker,et al.  Distribution, character and genesis of gold deposits in metamorphic terranes , 2005 .

[78]  J. Hammarstrom,et al.  Focus areas for data acquisition for potential domestic sources of critical minerals—Rare earth elements , 2019, Open-File Report.

[79]  A. Bolonin,et al.  Supergene processes and uranium ore formation in the Ronneburg ore field, Germany , 2012, Geology of Ore Deposits.

[80]  George J. Simandl,et al.  Carbonatites: related ore deposits, resources, footprint, and exploration methods , 2018, Applied Earth Science.

[81]  J. Lally,et al.  Uranium deposits of the Northern Territory , 2006 .

[82]  G. Beaudoin,et al.  A descriptive model for silver-lead-zinc veins in clastic metasedimentary terranes , 1992 .

[83]  C. Münchmeyer Exotic Deposits - Products of Lateral Migration of Supergene Solutions from Porphyry Copper Deposits , 1998 .

[84]  G. Markl,et al.  Natural fracking and the genesis of five-element veins , 2016, Mineralium Deposita.

[85]  Yigang Xu,et al.  The provenance of late Permian karstic bauxite deposits in SW China, constrained by the geochemistry of interbedded clastic rocks, and U–Pb–Hf–O isotopes of detrital zircons , 2017 .

[86]  Albert H. Hofstra,et al.  Carlin-Type Gold Deposits in Nevada: Critical Geologic Characteristics and Viable Models , 2005 .

[87]  Ryan D. Taylor,et al.  Arc-related porphyry molybdenum deposit model: Chapter D in Mineral deposit models for resource assessment , 2012 .

[88]  R. Mustard Granite-hosted gold mineralization at Timbarra, northern New South Wales, Australia , 2001 .

[89]  S. Castor,et al.  Lithium-Rich Claystone in the McDermitt Caldera, Nevada, USA: Geologic, Mineralogical, and Geochemical Characteristics and Possible Origin , 2020 .

[90]  P. Dennis Descriptive model of distal disseminated Ag-Au , 1992 .

[91]  P. Davidson,et al.  The Southeast Missouri (USA) Proterozoic iron metallogenic province—Types of deposits and genetic relationships to magnetite–apatite and iron oxide–copper–gold deposits , 2014 .

[92]  Mei-Fu Zhou,et al.  Geology, Geochronology, and Geochemistry of the Dahongshan Fe-Cu-(Au-Ag) Deposit, Southwest China: Implications for the Formation of Iron Oxide Copper-Gold Deposits in Intracratonic Rift Settings , 2017 .

[93]  M. P. Gorton,et al.  THE SCADDING GOLD MINE, EAST OF THE SUDBURY IGNEOUS COMPLEX, ONTARIO: AN IOCG-TYPE DEPOSIT? , 2007 .

[94]  Geoffrey S. Plumlee,et al.  The potential role of magmatic gases in the genesis of Illinois-Kentucky fluorspar deposits; implications from chemical reaction path modeling , 1995 .

[95]  B. Rusk Exploring for Iron Oxide Copper-Gold Deposits: Canada and Global Analogues. Geological Association of Canada Short Course Notes 20 , 2012 .

[96]  P. Spry,et al.  Critical Elements in Alkaline Igneous Rock-Related Epithermal Gold Deposits , 2016 .

[97]  O. Eckstrand,et al.  Geology of Canadian Mineral Deposit Types , 1995 .

[98]  G. Plumlee,et al.  Climax-Type Porphyry Molybdenum Deposits , 2009 .

[99]  L. Monteiro,et al.  Temporal evolution of the giant Salobo IOCG deposit, Carajás Province (Brazil): constraints from paragenesis of hydrothermal alteration and U-Pb geochronology , 2017, Mineralium Deposita.

[100]  S. Simmons,et al.  Geological characteristics of epithermal precious and base metal deposits , 2005 .

[101]  E. Schetselaar,et al.  Prospectivity modelling of Canadian magmatic Ni (±Cu ± Co ± PGE) sulphide mineral systems , 2021 .

[102]  T. Hoefen,et al.  Deposit model for heavy-mineral sands in coastal environments , 2014 .

[103]  P. Spry,et al.  Alkalic-type epithermal gold deposit model; Chapter R in Mineral deposit models for resource assessment , 2020 .

[104]  P. E. Brown,et al.  Characteristics and models for carlin-type gold deposits , 2000 .

[105]  D. Tillitt,et al.  Biological pathways of exposure and ecotoxicity values for uranium and associated radionuclides: Chapter D in Hydrological, geological, and biological site characterization of breccia pipe uranium deposits in Northern Arizona , 2010 .

[106]  Martin P Smith,et al.  Alteration paragenesis and mineral chemistry of the Tjårrojåkka apatite–iron and Cu (-Au) occurrences, Kiruna area, northern Sweden , 2005 .

[107]  V. Hollister On a proposed plutonic porphyry gold deposit model , 1992 .

[108]  C. Lopano,et al.  Microanalytical Approaches to Characterizing REE in Appalachian Basin Underclays , 2020, Minerals.

[109]  P. Černý,et al.  THE CLASSIFICATION OF GRANITIC PEGMATITES REVISITED , 2005 .

[110]  B. Yardley,et al.  Physicochemical Evolution of a Porphyry-Breccia System: A Laser Ablation ICP-MS Study of Fluid Inclusions in the Mount Leyshon Au Deposit, Queensland, Australia , 2011 .

[111]  L. Fontboté,et al.  The Candelaria-Punta del Cobre Iron Oxide Cu-Au(-Zn-Ag) Deposits, Chile , 2001 .

[112]  Sillitoe,et al.  Linkages between Volcanotectonic Settings, Ore-Fluid Compositions, and Epithermal Precious Metal Deposits , 2003 .

[113]  P. Spry,et al.  A classification of Broken Hill-type deposits: A critical review , 2021 .

[114]  C. Heinrich,et al.  Lithology and Hydrothermal Alteration Control the Distribution of Copper Grade in the Prominent Hill Iron Oxide-Copper-Gold Deposit (Gawler Craton, South Australia) , 2015 .

[115]  R. Zielinski,et al.  Rare earth elements in sedimentary phosphorite deposits: a global assessment , 2016 .

[116]  M. Barton,et al.  Porphyry deposits; characteristics and origin of hypogene features , 2005 .

[117]  K. Blake,et al.  The Lightning Creek Sill Complex, Cloncurry District, Northwest Queensland: A Source of Fluids for Fe Oxide Cu-Au Mineralization and Sodic-Calcic Alteration , 2000 .

[118]  F. Velasco,et al.  The Magmatic to Magmatic-Hydrothermal Evolution of the El Laco Deposit (Chile) and Its Implications for the Genesis of Magnetite-Apatite Deposits , 2017 .

[119]  J. Nash Volcanogenic Uranium Deposits: Geology, Geochemical Processes, and Criteria for Resource Assessment , 2010 .

[120]  K. Czarnota,et al.  Geological Surveys Unite to Improve Critical Mineral Security , 2021 .

[121]  J. D. Bliss Developments in mineral deposit modeling , 1992 .

[122]  C. Spandler,et al.  Tracking fluid sources for skarn formation using scapolite geochemistry: an example from the Jinshandian iron skarn deposit, Eastern China , 2019, Mineralium Deposita.

[123]  J. Warren Evaporites through time: Tectonic, climatic and eustatic controls in marine and nonmarine deposits , 2010 .

[124]  P. Megaw Evaluation of Oxidized Pb-Zn-Ag Carbonate Replacement Deposits of Mexico in Light of Supergene Zinc and Residual Lead Enrichment Processes , 2009 .

[125]  G. Markl,et al.  The mineralogical variability of hydrothermal native element-arsenide (five-element) associations and the role of physicochemical and kinetic factors concerning sulfur and arsenic , 2019, Ore Geology Reviews.

[126]  L. Munk,et al.  A preliminary deposit model for lithium brines , 2013 .

[127]  D. McCoy,et al.  Plutonic-Related Gold Deposits of Interior Alaska , 1997 .

[128]  G. Beaudoin,et al.  CONSTRAINTS ON THE GENESIS OF THE ARCHEAN OXIDIZED, INTRUSION-RELATED CANADIAN MALARTIC GOLD DEPOSIT, QUEBEC, CANADA—A DISCUSSION , 2014 .

[129]  P. Blevin Redox and Compositional Parameters for Interpreting the Granitoid Metallogeny of Eastern Australia: Implications for Gold‐rich Ore Systems , 2004 .

[130]  A. Koschinsky,et al.  Deep-Ocean Ferromanganese Crusts and Nodules , 2014 .

[131]  Huayong Chen,et al.  Contrasting fluids and reservoirs in the contiguous Marcona and Mina Justa iron oxide–Cu (–Ag–Au) deposits, south-central Perú , 2011 .

[132]  A. J. Naldrett Magmatic Sulfide Deposits: Geology, Geochemistry and Exploration , 2004 .

[133]  Donald A. Singer,et al.  Ni-Co laterite deposits of the world-database and grade and tonnage models , 2011 .

[134]  D. Leach,et al.  Metamorphic origin of the Coeur d'Alene base- and precious-metal veins in the Belt basin, Idaho and Montana , 1988 .

[135]  D. Harlov,et al.  Mineralogy, chemistry, and fluid-aided evolution of the Pea Ridge Fe oxide-(Y + REE) deposit, southeast Missouri, USA , 2016 .