The structure of the central stalk in bovine F1-ATPase at 2.4 Å resolution

[1]  A G Leslie,et al.  Structure of bovine mitochondrial F(1)-ATPase inhibited by Mg(2+) ADP and aluminium fluoride. , 2000, Structure.

[2]  Masasuke Yoshida,et al.  The Role of the DELSEED Motif of the β Subunit in Rotation of F1-ATPase* , 2000, The Journal of Biological Chemistry.

[3]  N. P. Lê,et al.  Escherichia coli ATP synthase alpha subunit Arg-376: the catalytic site arginine does not participate in the hydrolysis/synthesis reaction but is required for promotion to the steady state. , 2000, Biochemistry.

[4]  H. Noji,et al.  The role of the DELSEED motif of the beta subunit in rotation of F1-ATPase. , 2000, The Journal of biological chemistry.

[5]  J. Weber,et al.  Rate acceleration of ATP hydrolysis by F(1)F(o)-ATP synthase. , 2000, The Journal of experimental biology.

[6]  A G Leslie,et al.  Molecular architecture of the rotary motor in ATP synthase. , 1999, Science.

[7]  B. Matthews,et al.  Structural features of the gamma subunit of the Escherichia coli F(1) ATPase revealed by a 4.4-A resolution map obtained by x-ray crystallography. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[8]  Roderick A. Capaldi,et al.  The ε Subunit of the F1F0 Complex ofEscherichia coli , 1999, The Journal of Biological Chemistry.

[9]  Masasuke Yoshida,et al.  Rotation of Escherichia coli F(1)-ATPase. , 1999, Biochemical and biophysical research communications.

[10]  J. Walker,et al.  Novel features in the structure of bovine ATP synthase. , 1999, Journal of molecular biology.

[11]  R. Capaldi,et al.  The epsilon subunit of the F(1)F(0) complex of Escherichia coli. cross-linking studies show the same structure in situ as when isolated. , 1999, The Journal of biological chemistry.

[12]  R. Capaldi,et al.  Solution Structure of the ε Subunit of the F1-ATPase from Escherichia coli and Interactions of This Subunit with β Subunits in the Complex* , 1998, The Journal of Biological Chemistry.

[13]  John E Walker,et al.  ATP Synthesis by Rotary Catalysis (Nobel lecture). , 1998, Angewandte Chemie.

[14]  R J Read,et al.  Crystallography & NMR system: A new software suite for macromolecular structure determination. , 1998, Acta crystallographica. Section D, Biological crystallography.

[15]  Kazuhiko Kinosita,et al.  Direct Observation of the Rotation of ε Subunit in F1-ATPase* , 1998, The Journal of Biological Chemistry.

[16]  A. Leslie,et al.  Bovine F1-ATPase covalently inhibited with 4-chloro-7-nitrobenzofurazan: the structure provides further support for a rotary catalytic mechanism. , 1998, Structure.

[17]  Kazuhiko Kinosita,et al.  F1-ATPase Is a Highly Efficient Molecular Motor that Rotates with Discrete 120° Steps , 1998, Cell.

[18]  Chris Sander,et al.  Touring protein fold space with Dali/FSSP , 1998, Nucleic Acids Res..

[19]  J. Mitchell Guss,et al.  Crystal structure of the ϵ subunit of the proton-translocating ATP synthase from Escherichia coli , 1997 .

[20]  S. Jones,et al.  Prediction of protein-protein interaction sites using patch analysis. , 1997, Journal of molecular biology.

[21]  G. Murshudov,et al.  Refinement of macromolecular structures by the maximum-likelihood method. , 1997, Acta crystallographica. Section D, Biological crystallography.

[22]  R M Esnouf,et al.  An extensively modified version of MolScript that includes greatly enhanced coloring capabilities. , 1997, Journal of molecular graphics & modelling.

[23]  Kazuhiko Kinosita,et al.  Direct observation of the rotation of F1-ATPase , 1997, Nature.

[24]  E A Merritt,et al.  Raster3D: photorealistic molecular graphics. , 1997, Methods in enzymology.

[25]  U. Uhlin,et al.  Crystal structure of the epsilon subunit of the proton-translocating ATP synthase from Escherichia coli. , 1997, Structure.

[26]  P. Boyer The ATP synthase--a splendid molecular machine. , 1997, Annual review of biochemistry.

[27]  C. Tang,et al.  The Stalk Region of the Escherichia coli ATP Synthase , 1996, The Journal of Biological Chemistry.

[28]  J. Abrahams,et al.  The structure of bovine F1-ATPase complexed with the peptide antibiotic efrapeptin. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[29]  J. Abrahams,et al.  The structure of bovine F1-ATPase complexed with the antibiotic inhibitor aurovertin B. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[30]  R. Aggeler,et al.  Nucleotide-dependent Movement of the ε Subunit between α and β Subunits in the Escherichia coli F1F0-type ATPase* , 1996, The Journal of Biological Chemistry.

[31]  J. Walker,et al.  The delta- and epsilon-subunits of bovine F1-ATPase interact to form a heterodimeric subcomplex. , 1996, The Biochemical journal.

[32]  R. Capaldi,et al.  Characterization of the Interface between and Subunits of Escherichia coli F-ATPase (*) , 1996, The Journal of Biological Chemistry.

[33]  C. Tang,et al.  Characterization of the interface between gamma and epsilon subunits of Escherichia coli F1-ATPase. , 1996, The Journal of biological chemistry.

[34]  F. Dahlquist,et al.  Structural features of the ε subunit of the Escherichia coli ATP synthase determined by NMR spectroscopy , 1995, Nature Structural Biology.

[35]  R. Aggeler,et al.  Arrangement of the epsilon subunit in the Escherichia coli ATP synthase from the reactivity of cysteine residues introduced at different positions in this subunit. , 1995, Biochimica et biophysica acta.

[36]  R. Aggeler,et al.  Disulfide bond formation between the COOH-terminal domain of the beta subunits and the gamma and epsilon subunits of the Escherichia coli F1-ATPase. Structural implications and functional consequences. , 1995, The Journal of biological chemistry.

[37]  J. Thompson,et al.  CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. , 1994, Nucleic acids research.

[38]  Collaborative Computational,et al.  The CCP4 suite: programs for protein crystallography. , 1994, Acta crystallographica. Section D, Biological crystallography.

[39]  Jan Pieter Abrahams,et al.  Structure at 2.8 Â resolution of F1-ATPase from bovine heart mitochondria , 1994, Nature.

[40]  J. Navaza,et al.  AMoRe: an automated package for molecular replacement , 1994 .

[41]  J. Thornton,et al.  PROCHECK: a program to check the stereochemical quality of protein structures , 1993 .

[42]  J. Abrahams,et al.  Crystallization of F1-ATPase from bovine heart mitochondria. , 1993, Journal of molecular biology.

[43]  P. Boyer,et al.  The binding change mechanism for ATP synthase--some probabilities and possibilities. , 1993, Biochimica et biophysica acta.

[44]  R. Aggeler,et al.  Introduction of reactive cysteine residues in the epsilon subunit of Escherichia coli F1 ATPase, modification of these sites with tetrafluorophenyl azide-maleimides, and examination of changes in the binding of the epsilon subunit when different nucleotides are in catalytic sites. , 1992, Biochemistry.

[45]  J. Zou,et al.  Improved methods for building protein models in electron density maps and the location of errors in these models. , 1991, Acta crystallographica. Section A, Foundations of crystallography.

[46]  Y. Mukohata,et al.  The γ‐subunit of ATP synthase from spinach chloroplasts Primary structure deduced from the cloned cDNA sequence , 1988, FEBS letters.

[47]  J. Walker,et al.  Primary structure and subunit stoichiometry of F1-ATPase from bovine mitochondria. , 1985, Journal of molecular biology.

[48]  M. Tommasino,et al.  Effect of dicyclohexylcarbodiimide on unisite and multisite catalytic activities of the adenosinetriphosphatase of Escherichia coli. , 1985, Biochemistry.

[49]  Y. Hatefi,et al.  Inhibitory chemical modifications of F1-ATPase: effects on the kinetics of adenosine 5'-triphosphate synthesis and hydrolysis in reconstituted systems. , 1984, Biochemistry.

[50]  C. Nalin,et al.  Role of a disulfide bond in the gamma subunit in activation of the ATPase of chloroplast coupling factor 1. , 1984, The Journal of biological chemistry.

[51]  M. Saraste,et al.  Subunit equivalence in Escherichia coli and bovine heart mitochondrial F1F0 ATPases , 1982, FEBS letters.

[52]  M. Yoshida,et al.  Inactivation of the bovine mitochondrial F1-ATPase with dicyclohexyl[14C]carbodiimide leads to the modification of a specific glutamic acid residue in the beta subunit. , 1981, The Journal of biological chemistry.

[53]  J. Richardson,et al.  The anatomy and taxonomy of protein structure. , 1981, Advances in protein chemistry.

[54]  M. Satre,et al.  Inactivation of Escherichia coli BF1-ATPase by dicyclohexylcarbodiimide. Chemical modification of the beta subunit. , 1979, Biochemistry.