The work presented in this paper is part of a project called ARChEaN (Aerodynamic of Rotors in Confined ENvironment) whose objective is to study the interactions of a micro drone rotor with its surroundings in the case of flight in enclosed environments such as those encountered, for example, in archeological exploration of caves. To do so the influence of the environment (walls, ground, ceiling, etc) on the rotor’s aerodynamic performance as well as on the flow field between the rotor and the surroundings is studied. This paper focuses on two different configurations, flight near the ground and flight near a corner (wall and ground), and the results are analyzed and compared to a general free flight case (i.e. far away from any obstacle). In order to carry out this analysis both numerical and experimental approaches are conducted. The objective is to validate the numerical model with the results obtained experimentally and to benefit from the advantages of both approaches in terms of flow analysis. This research work will provide knowledge on how to operate these systems as to minimize the possible negative environment disturbances, reduce power consumption and predict the micro drone’s behaviour during enclosed flights.