A modified Algorithm to Model Highly Nonlinear System

In this paper, the Fusion of neural and fuzzy Systems will be investigated. Membership Function Generation and its mapping to Neural Network are introduced. An adaptive network fuzzy inference system (ANFIS) is introduced, and Multiple Inputs /Outputs Systems (Extended ANFIS Algorithm) is implemented. A Modification algorithm of ANFIS, Coupling of ANFIS called coactive neuro fuzzy system (CANFIS), is introduced and implemented using Matlab. The software of the modified algorithm of MIMO model identification is built. To test the validity of the modified algorithm ANFIS (CANFIS algorithm), an example is simulated from the numerical equation. The result of modified algorithm (CANFIS) showed a conformance with the simulated example and the root mean square (RMSE) is very small. (Tharwat O. S. Hanafy. A modified Algorithm to Model Highly Nonlinear System. Journal of American Science 2010;6(12):747-759). (ISSN: 1545-1003). http://www.americanscience.org.

[1]  Chin-Teng Lin,et al.  A neural fuzzy control system with structure and parameter learning , 1995 .

[2]  Rudolf Kruse,et al.  Neuro-fuzzy systems for function approximation , 1999, Fuzzy Sets Syst..

[3]  E. Mizutani,et al.  Neuro-Fuzzy and Soft Computing-A Computational Approach to Learning and Machine Intelligence [Book Review] , 1997, IEEE Transactions on Automatic Control.

[4]  Madasu Hanmandlu,et al.  Generalization of adaptive neuro-fuzzy inference systems , 2000, IEEE Trans. Neural Networks Learn. Syst..

[5]  Hung T. Nguyen,et al.  A First Course in Fuzzy and Neural Control , 2002 .

[6]  Juan Luis Castro,et al.  FRIwE: fuzzy rule identification with exceptions , 2004, IEEE Transactions on Fuzzy Systems.

[7]  António Dourado,et al.  "Applying subtractive clustering for neuro-fuzzy modelling of a bleaching plant" , 1999 .

[8]  A. Casebeer,et al.  Combining qualitative and quantitative research methods: considering the possibilities for enhancing the study of chronic diseases. , 1997, Chronic diseases in Canada.

[9]  Hagbae Kim,et al.  A new intelligent digital redesign for T-S fuzzy systems: global approach , 2004, IEEE Transactions on Fuzzy Systems.

[10]  Euntai Kim,et al.  A new approach to fuzzy modeling , 1997, IEEE Trans. Fuzzy Syst..

[11]  J. A. Roubos,et al.  Identification of MIMO systems by input-output TS fuzzy models , 1998, 1998 IEEE International Conference on Fuzzy Systems Proceedings. IEEE World Congress on Computational Intelligence (Cat. No.98CH36228).

[12]  Ebrahim Mamdani,et al.  Applications of fuzzy algorithms for control of a simple dynamic plant , 1974 .

[13]  Xiaoou Li,et al.  Fuzzy identification using fuzzy neural networks with stable learning algorithms , 2004, IEEE Transactions on Fuzzy Systems.

[14]  Robert Babuska,et al.  Neuro-fuzzy methods for modeling and identification , 2003 .

[15]  Chuen-Tsai Sun,et al.  Neuro-fuzzy modeling and control , 1995, Proc. IEEE.

[16]  Michio Sugeno,et al.  A fuzzy-logic-based approach to qualitative modeling , 1993, IEEE Trans. Fuzzy Syst..

[17]  Robert Shorten,et al.  On the interpretation and identification of dynamic Takagi-Sugeno fuzzy models , 2000, IEEE Trans. Fuzzy Syst..

[18]  Stephen L. Chiu,et al.  Fuzzy Model Identification Based on Cluster Estimation , 1994, J. Intell. Fuzzy Syst..

[19]  Jyh-Shing Roger Jang,et al.  ANFIS: adaptive-network-based fuzzy inference system , 1993, IEEE Trans. Syst. Man Cybern..

[20]  M. Kamoun,et al.  IDENTIFICATION OF NONLINEAR MULTIVARIABLE SYSTEMS BY ADAPTIVE FUZZY TAKAGI-SUGENO MODEL , 2003 .

[21]  L. Glass,et al.  Oscillation and chaos in physiological control systems. , 1977, Science.

[22]  Robert Fullér,et al.  Introduction to neuro-fuzzy systems , 1999, Advances in soft computing.

[23]  Rajesh N. Davé,et al.  Robust clustering methods: a unified view , 1997, IEEE Trans. Fuzzy Syst..

[24]  Nikola K. Kasabov,et al.  HyFIS: adaptive neuro-fuzzy inference systems and their application to nonlinear dynamical systems , 1999, Neural Networks.

[25]  Hossein Salehfar,et al.  A systematic approach to linguistic fuzzy modeling based on input-output data , 2000, 2000 Winter Simulation Conference Proceedings (Cat. No.00CH37165).