Low-Frequency Noise and Offset Rejection in DC-Coupled Neural Amplifiers: A Review and Digitally-Assisted Design Tutorial

We review integrated circuits for low-frequency noise and offset rejection as a motivation for the presented digitally-assisted neural amplifier design methodology. Conventional AC-coupled neural amplifiers inherently reject input DC offset but have key limitations in area, linearity, DC drift, and spectral accuracy. Their chopper stabilization reduces low-frequency intrinsic noise at the cost of degraded area, input impedance and design complexity. DC-coupled implementations with digital high-pass filtering yield improved area, linearity, drift, and spectral accuracy and are inherently suitable for simple chopper stabilization. As a design example, a 56-channel 0.13 <inline-formula><tex-math notation="LaTeX">$\mu\text{m}$</tex-math></inline-formula> CMOS intracranial EEG interface is presented. DC offset of up to <inline-formula><tex-math notation="LaTeX">$\pm$</tex-math></inline-formula>50 mV is rejected by a digital low-pass filter and a 16-bit delta-sigma DAC feeding back into the folding node of a folded-cascode LNA with CMRR of 65 dB. A bank of seven column-parallel fully differential SAR ADCs with ENOB of 6.6 are shared among 56 channels resulting in 0.018 <inline-formula><tex-math notation="LaTeX">$\text{mm}^{2}$</tex-math></inline-formula> effective channel area. Compensation-free direct input chopping yields integrated input-referred noise of 4.2 <inline-formula><tex-math notation="LaTeX">$\mu V_{\mathrm{rms}}$</tex-math></inline-formula> over the bandwidth of 1 Hz to 1 kHz. The 8.7 <inline-formula><tex-math notation="LaTeX">$\text{mm}^{2}$</tex-math></inline-formula> chip dissipating 1.07 mW has been validated <italic>in vivo</italic> in online intracranial EEG monitoring in freely moving rats.

[1]  Refet Firat Yazicioglu,et al.  A $160~\mu {\rm W}$ 8-Channel Active Electrode System for EEG Monitoring , 2011, IEEE Transactions on Biomedical Circuits and Systems.

[2]  Refet Firat Yazicioglu,et al.  A 160μW 8-channel active electrode system for EEG monitoring , 2011, 2011 IEEE International Solid-State Circuits Conference.

[3]  Yusuf Leblebici,et al.  A micropower neural recording amplifier with improved noise efficiency factor , 2009, 2009 European Conference on Circuit Theory and Design.

[4]  Refet Firat Yazicioglu,et al.  A 200 $\mu$ W Eight-Channel EEG Acquisition ASIC for Ambulatory EEG Systems , 2008, IEEE Journal of Solid-State Circuits.

[5]  Mohamad Sawan,et al.  A Low-Power Integrated Bioamplifier With Active Low-Frequency Suppression , 2007, IEEE Transactions on Biomedical Circuits and Systems.

[6]  Naveen Verma,et al.  A Micro-Power EEG Acquisition SoC With Integrated Feature Extraction Processor for a Chronic Seizure Detection System , 2010, IEEE Journal of Solid-State Circuits.

[7]  A. Bakker,et al.  High-Accuracy CMOS Smart Temperature Sensors , 2000 .

[8]  Patrick D Wolf,et al.  A low power multichannel analog front end for portable neural signal recordings , 2004, Journal of Neuroscience Methods.

[9]  A. L. Lacaita,et al.  A multi-channel low-power IC for neural spike recording with data compression and narrowband 400-MHz MC-FSK wireless transmission , 2010, 2010 Proceedings of ESSCIRC.

[10]  Pedram Mohseni,et al.  A fully integrated neural recording amplifier with DC input stabilization , 2004, IEEE Transactions on Biomedical Engineering.

[11]  Gabor C. Temes,et al.  Circuit techniques for reducing the effects of op-amp imperfections: autozeroing, correlated double sampling, and chopper stabilization , 1996, Proc. IEEE.

[12]  Refet Firat Yazicioglu,et al.  A 30 $\mu$ W Analog Signal Processor ASIC for Portable Biopotential Signal Monitoring , 2011, IEEE Journal of Solid-State Circuits.

[13]  Felice T. Sun,et al.  Responsive cortical stimulation for the treatment of epilepsy , 2011, Neurotherapeutics.

[14]  Vladimir Stojanovic,et al.  Integrated circuit design with NEM relays , 2008, 2008 IEEE/ACM International Conference on Computer-Aided Design.

[15]  A.-T. Avestruz,et al.  A 2 $\mu\hbox{W}$ 100 nV/rtHz Chopper-Stabilized Instrumentation Amplifier for Chronic Measurement of Neural Field Potentials , 2007, IEEE Journal of Solid-State Circuits.

[16]  Karim Abdelhalim,et al.  Low-distortion super-GOhm subthreshold-MOS resistors for CMOS neural amplifiers , 2013, 2013 IEEE Biomedical Circuits and Systems Conference (BioCAS).

[17]  A. Prodic,et al.  Multibit $\Sigma$–$\Delta$ PWM Digital Controller IC for DC–DC Converters Operating at Switching Frequencies Beyond 10 MHz , 2007, IEEE Transactions on Power Electronics.

[18]  Alan V. Oppenheim,et al.  Discrete-time signal processing (2nd ed.) , 1999 .

[19]  Timothy Denison,et al.  A 2.2/spl mu/W 94nV//spl radic/Hz, Chopper-Stabilized Instrumentation Amplifier for EEG Detection in Chronic Implants , 2007, 2007 IEEE International Solid-State Circuits Conference. Digest of Technical Papers.

[20]  Jan M. Rabaey,et al.  A 0.013 ${\hbox {mm}}^{2}$, 5 $\mu\hbox{W}$ , DC-Coupled Neural Signal Acquisition IC With 0.5 V Supply , 2012, IEEE Journal of Solid-State Circuits.

[21]  Karim Abdelhalim,et al.  915-MHz FSK/OOK Wireless Neural Recording SoC With 64 Mixed-Signal FIR Filters , 2013, IEEE Journal of Solid-State Circuits.

[22]  Gregory Molnar,et al.  An 8μW Heterodyning Chopper Amplifier for Direct Extraction of 2μVrms Neuronal Biomarkers , 2008, 2008 IEEE International Solid-State Circuits Conference - Digest of Technical Papers.

[23]  Jan M. Rabaey,et al.  A Fully-Integrated, Miniaturized (0.125 mm²) 10.5 µW Wireless Neural Sensor , 2013, IEEE Journal of Solid-State Circuits.

[24]  Karim Abdelhalim,et al.  Inductively-powered direct-coupled 64-channel chopper-stabilized epilepsy-responsive neurostimulator with digital offset cancellation and tri-band radio , 2014, ESSCIRC 2014 - 40th European Solid State Circuits Conference (ESSCIRC).

[25]  Konrad P Kording,et al.  How advances in neural recording affect data analysis , 2011, Nature Neuroscience.

[26]  R. R. Harrison,et al.  A low-power low-noise CMOS amplifier for neural recording applications , 2003, IEEE J. Solid State Circuits.

[27]  Yong Ping Xu,et al.  A Compact, Low Input Capacitance Neural Recording Amplifier , 2013, IEEE Transactions on Biomedical Circuits and Systems.

[28]  P. K. Chan,et al.  A CMOS analog front-end IC for portable EEG/ECG monitoring applications , 2005, IEEE Transactions on Circuits and Systems I: Regular Papers.

[29]  Roman Genov,et al.  56-channel direct-coupled chopper-stabilized EEG monitoring ASIC with digitally-assisted offset correction at the folding nodes , 2014, 2014 IEEE Biomedical Circuits and Systems Conference (BioCAS) Proceedings.

[30]  Maysam Ghovanloo,et al.  An Inductively Powered Scalable 32-Channel Wireless Neural Recording System-on-a-Chip for Neuroscience Applications , 2010, IEEE Transactions on Biomedical Circuits and Systems.

[31]  Karim Abdelhalim,et al.  Compact chopper-stabilized neural amplifier with low-distortion high-pass filter in 0.13µm CMOS , 2012, 2012 IEEE International Symposium on Circuits and Systems.

[32]  Michael P. Flynn,et al.  A 64 Channel Programmable Closed-Loop Neurostimulator With 8 Channel Neural Amplifier and Logarithmic ADC , 2010, IEEE Journal of Solid-State Circuits.

[33]  G. Buzsáki,et al.  Neuronal Oscillations in Cortical Networks , 2004, Science.

[34]  S. Acharya,et al.  Toward Electrocorticographic Control of a Dexterous Upper Limb Prosthesis: Building Brain-Machine Interfaces , 2012, IEEE Pulse.