Green area index from an unmanned aerial system over wheat and rapeseed crops

[1]  F. E. Nicodemus,et al.  Geometrical considerations and nomenclature for reflectance , 1977 .

[2]  W. Verhoef Light scattering by leaf layers with application to canopy reflectance modelling: The SAIL model , 1984 .

[3]  W. Verhoef Earth observation modelling based on layer scattering matrices , 1984 .

[4]  F. Baret,et al.  PROSPECT: A model of leaf optical properties spectra , 1990 .

[5]  A. Kuusk The Hot Spot Effect in Plant Canopy Reflectance , 1991 .

[6]  F. Baret,et al.  Potentials and limits of vegetation indices for LAI and APAR assessment , 1991 .

[7]  J. Roujean,et al.  A bidirectional reflectance model of the Earth's surface for the correction of remote sensing data , 1992 .

[8]  J. Chen,et al.  Defining leaf area index for non‐flat leaves , 1992 .

[9]  T. Faurtyot Vegetation water and dry matter contents estimated from top-of-the-atmosphere reflectance data: A simulation study , 1997 .

[10]  R. Myneni,et al.  Investigation of a model inversion technique to estimate canopy biophysical variables from spectral and directional reflectance data , 2000 .

[11]  Using multispectral reflectance to retrieve LAI and chlorophyll content of maize and soybean , 2001 .

[12]  N. Zhang,et al.  Precision agriculture—a worldwide overview , 2002 .

[13]  Soizik Laguette,et al.  Remote sensing applications for precision agriculture: A learning community approach , 2003 .

[14]  Yuri Knyazikhin,et al.  Retrieval of canopy biophysical variables from bidirectional reflectance Using prior information to solve the ill-posed inverse problem , 2003 .

[15]  Xingfa Gu,et al.  Evaluation of methods for soil surface moisture estimation from reflectance data , 2003 .

[16]  John R. Miller,et al.  Hyperspectral vegetation indices and novel algorithms for predicting green LAI of crop canopies: Modeling and validation in the context of precision agriculture , 2004 .

[17]  Frédéric Baret,et al.  Review of methods for in situ leaf area index determination Part I. Theories, sensors and hemispherical photography , 2004 .

[18]  F. Baret,et al.  Review of methods for in situ leaf area index (LAI) determination: Part II. Estimation of LAI, errors and sampling , 2004 .

[19]  Eric Justes,et al.  Evaluation of the ability of the crop model STICS to recommend nitrogen fertilisation rates according to agro-environmental criteria , 2004 .

[20]  Ranga B. Myneni,et al.  Analysis and optimization of the MODIS leaf area index algorithm retrievals over broadleaf forests , 2005, IEEE Transactions on Geoscience and Remote Sensing.

[21]  J. V. Stafford,et al.  FARMSTAR: an efficient decision support tool for near real time crop management from satellite images , 2005 .

[22]  Gianluca Li Causi,et al.  Optimal subtraction of OH airglow emission: A tool for infrared fiber spectroscopy , 2005 .

[23]  J. Bouma,et al.  Future Directions of Precision Agriculture , 2005, Precision Agriculture.

[24]  Michael E. Schaepman,et al.  A review on reflective remote sensing and data assimilation techniques for enhanced agroecosystem modeling , 2007, Int. J. Appl. Earth Obs. Geoinformation.

[25]  Frédéric Baret,et al.  Assessment of Unmanned Aerial Vehicles Imagery for Quantitative Monitoring of Wheat Crop in Small Plots , 2008, Sensors.

[26]  F. Baret,et al.  Estimating Canopy Characteristics from Remote Sensing Observations: Review of Methods and Associated Problems , 2008 .

[27]  L. Dini,et al.  Retrieval of Leaf Area Index from CHRIS/PROBA data: an analysis of the directional and spectral information content , 2008 .

[28]  W. Verhoef,et al.  PROSPECT+SAIL models: A review of use for vegetation characterization , 2009 .

[29]  F. Baret,et al.  GAI estimates of row crops from downward looking digital photos taken perpendicular to rows at 57.5° zenith angle: Theoretical considerations based on 3D architecture models and application to wheat crops , 2010 .

[30]  Sivasathivel Kandasamy,et al.  The effective nature of LAI as measured from remote sensing observations , 2010, 2010 IEEE International Geoscience and Remote Sensing Symposium.

[31]  Pierre Defourny,et al.  A conceptual framework to define the spatial resolution requirements for agricultural monitoring using remote sensing , 2010 .

[32]  A. Viña,et al.  Comparison of different vegetation indices for the remote assessment of green leaf area index of crops , 2011 .

[33]  Aleixandre Verger,et al.  Optimal modalities for radiative transfer-neural network estimation of canopy biophysical characteristics: Evaluation over an agricultural area with CHRIS/PROBA observations , 2011 .

[34]  Chunhua Zhang,et al.  The application of small unmanned aerial systems for precision agriculture: a review , 2012, Precision Agriculture.

[35]  P. Zarco-Tejada,et al.  Mapping radiation interception in row-structured orchards using 3D simulation and high-resolution airborne imagery acquired from a UAV , 2012, Precision Agriculture.

[36]  Luis Alonso,et al.  Machine learning regression algorithms for biophysical parameter retrieval: Opportunities for Sentinel-2 and -3 , 2012 .

[37]  P. Zarco-Tejada,et al.  Fluorescence, temperature and narrow-band indices acquired from a UAV platform for water stress detection using a micro-hyperspectral imager and a thermal camera , 2012 .

[38]  F. Baret,et al.  A semi-automatic system for high throughput phenotyping wheat cultivars in-field conditions: description and first results. , 2012, Functional plant biology : FPB.

[39]  Francis Canisius,et al.  Evaluation of the information content of Medium Resolution Imaging Spectrometer (MERIS) data for regional leaf area index assessment , 2012 .

[40]  F. Baret,et al.  Remotely sensed green area index for winter wheat crop monitoring:10-Year assessment at regional scale over a fragmented landscape , 2012 .

[41]  E. Pattey,et al.  Assessment of vegetation indices for regional crop green LAI estimation from Landsat images over multiple growing seasons , 2012 .

[42]  Adam J. Mathews,et al.  Visualizing and Quantifying Vineyard Canopy LAI Using an Unmanned Aerial Vehicle (UAV) Collected High Density Structure from Motion Point Cloud , 2013, Remote. Sens..

[43]  Yubin Lan,et al.  Development and prospect of unmanned aerial vehicle technologies for agricultural production management , 2013 .

[44]  Heikki Saari,et al.  Processing and Assessment of Spectrometric, Stereoscopic Imagery Collected Using a Lightweight UAV Spectral Camera for Precision Agriculture , 2013, Remote. Sens..

[45]  W. Verhoef,et al.  A Bayesian object based approach for estimating vegetation biophysical and biochemical variables from APEX at sensor radiance data , 2013 .

[46]  Bo-Hui Tang,et al.  Inversion of the PROSAIL model to estimate leaf area index of maize, potato, and sunflower fields from unmanned aerial vehicle hyperspectral data , 2014, Int. J. Appl. Earth Obs. Geoinformation.