Self-assembly of anisotropic tethered nanoparticle shape amphiphiles

Abstract The varied and exotic shapes of new nanoscale organic and inorganic building blocks provide new opportunities to engineer materials possessing specific functionality and physical properties dictated by the unique packings of these particles. We briefly review some of the current strategies for inducing the self-assembly of these building blocks focusing on one strategy in particular—the attachment of tethers to the building blocks at precise locations to create tethered nanoparticle “shape amphiphiles”. We use computer simulation to demonstrate that the resulting anisotropy imparted to nanocrystals or nanocolloids by the tethers can be used to encode simple design rules into the building blocks that ultimately result in a unique self-assembled structure. We present a general classification scheme for tethered nanoparticles wherein the anisotropy of a shape amphiphile is described by a vector comprised of one or more axes each describing a measure of anisotropy.

[1]  R. G. Larson,et al.  Monte Carlo Simulations of the Phase Behavior of Surfactant Solutions , 1996 .

[2]  Catherine J. Murphy,et al.  An Improved Synthesis of High‐Aspect‐Ratio Gold Nanorods , 2003 .

[3]  The chemical basis of virus structure, dissociation and reassembly. , 1975, Frontiers of biology.

[4]  C. Tschierske,et al.  Formation of columnar mesophases by rod‐like molecules: Facial amphiphilic p‐Terphenyl derivatives , 1997 .

[5]  D. Roux,et al.  Studying a New Type of Surfactant Aggregate (“Spherulites”) as Chemical Microreactors. A First Example: Copper Ion Entrapping and Particle Synthesis , 1999 .

[6]  E. Thomas The ABCs of Self-Assembly , 1999, Science.

[7]  M. Brust,et al.  Spontaneous ordering of bimodal ensembles of nanoscopic gold clusters , 1998, Nature.

[8]  Håkan Wennerström,et al.  The Colloidal Domain: Where Physics, Chemistry, Biology and Technology Meet , 1994 .

[9]  Patrick T. Mather,et al.  Amphiphilic Telechelics Incorporating Polyhedral Oligosilsesquioxane: 1. Synthesis and Characterization , 2002 .

[10]  W. Zin,et al.  Supramolecular Cylinder and Sphere Generating Thermotropic Hexagonal Columnar and Spherical Micellar Liquid Crystalline Assemblies in Coil−Rod−Coil Block Molecules , 1998 .

[11]  Edward L Cussler,et al.  Core-shell gyroid morphology in a poly(isoprene-block-styrene-block- dimethylsiloxane) triblock copolymer , 1999 .

[12]  Y. Mogi,et al.  Preparation and morphology of triblock copolymers of the ABC type , 1992 .

[13]  Nicholas A Kotov,et al.  Quantum dot on a rope. , 2002, Journal of the American Chemical Society.

[14]  Helmuth Möhwald,et al.  Magnetic Core–Shell Particles: Preparation of Magnetite Multilayers on Polymer Latex Microspheres , 1999 .

[15]  R. Feely,et al.  Quantification of decadal anthropogenic CO2 uptake in the ocean based on dissolved inorganic carbon measurements , 1998, Nature.

[16]  K. Schanze,et al.  Preparation of CdS Nanoparticles in Salt-Induced Block Copolymer Micelles , 2001 .

[17]  M. Pileni,et al.  Nanocrystal Self-Assemblies: Fabrication and Collective Properties , 2001 .

[18]  Alan R. Hemsley,et al.  Architecture in the microcosm: biocolloids, self-assembly and pattern formation , 2000, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[19]  William J. Dauksher,et al.  Inspection of templates for imprint lithography , 2004 .

[20]  E. Lacaze,et al.  Ruthenium Nanoparticles: Size, Shape, and Self-Assemblies , 2003 .

[21]  J. Storhoff,et al.  A DNA-based method for rationally assembling nanoparticles into macroscopic materials , 1996, Nature.

[22]  Jason E. Riggs,et al.  Strong Luminescence of Solubilized Carbon Nanotubes , 2000 .

[23]  C. Viney,et al.  Palladium- and platinum-catalyzed coupling reactions of allyloxy aromatics with hydridosilanes and hydridosiloxanes: Novel liquid crystalline/organosilane materials , 1994 .

[24]  Gautam R. Desiraju,et al.  Crystal engineering : the design of organic solids , 1989 .

[25]  Michel Meunier,et al.  Fabrication and Characterization of Gold Nanoparticles by Femtosecond Laser Ablation in an Aqueous Solution of Cyclodextrins , 2003 .

[26]  V. Rotello,et al.  Self-assembly of gold nanoparticles through tandem hydrogen bonding and polyoligosilsequioxane (POSS)-POSS recognition processes. , 2002, Chemical communications.

[27]  E. Coughlin,et al.  Hemi-Telechelic Polystyrene-POSS Copolymers as Model Systems for the Study of Well-Defined Inorganic/Organic Hybrid Materials , 2004 .

[28]  T. Ohno,et al.  Growth of fullerene nanoparticles prepared by the gas-evaporation technique , 1998 .

[29]  F. Bates,et al.  Phase behavior of polystyrene-poly(2-vinylpyridine) diblock copolymers , 1996 .

[30]  R. Markham,et al.  A study of the self-assembly process in a small spherical virus. Formation of organized structures from protein subunits in vitro. , 1967, Virology.

[31]  A. Alivisatos,et al.  Colloidal Nanocrystal Shape and Size Control: The Case of Cobalt , 2001, Science.

[32]  Liberato Manna,et al.  Controlled growth of tetrapod-branched inorganic nanocrystals , 2003, Nature materials.

[33]  H. R. Warner,et al.  Kinetic Theory and Rheology of Dilute Suspensions of Finitely Extendible Dumbbells , 1972 .

[34]  Frank S. Bates,et al.  Origins of Complex Self-Assembly in Block Copolymers , 1996 .

[35]  Sharon C Glotzer,et al.  Phase diagrams of self-assembled mono-tethered nanospheres from molecular simulation and comparison to surfactants. , 2005, Langmuir : the ACS journal of surfaces and colloids.

[36]  G. Fredrickson,et al.  Block Copolymers—Designer Soft Materials , 1999 .

[37]  Weidong Yang,et al.  Shape control of CdSe nanocrystals , 2000, Nature.

[38]  R. Stadler,et al.  “Ball at the wall” — A new lamellar multiphase morphology in a polystyrene‐block‐polybutadiene‐block‐poly(methyl methacrylate) triblock copolymer , 1994 .

[39]  J. Frydman Folding of newly translated proteins in vivo: the role of molecular chaperones. , 2001, Annual review of biochemistry.

[40]  C. Murphy Nanocubes and Nanoboxes , 2002, Science.

[41]  Stabilization of brome mosaic virus , 1976 .

[42]  S. Glotzer,et al.  Simulations of Tetra-Tethered Organic/Inorganic Nanocube−Polymer Assemblies , 2005 .

[43]  S. Dai,et al.  Aggregation behavior of C60-End-Capped poly(ethylene oxide)s , 2003 .

[44]  Arindam Banerjee,et al.  Submitted for publication , 1981 .

[45]  Sharon C. Glotzer,et al.  Tethered Nano Building Blocks: Toward a Conceptual Framework for Nanoparticle Self-Assembly , 2003 .

[46]  Vincent M. Rotello,et al.  Self-assembly of nanoparticles into structured spherical and network aggregates , 2000, Nature.

[47]  J. Møller Micelles, monolayers, and biomembranes , 1995 .

[48]  D Baker,et al.  Mechanisms of protein folding. , 2001, Current opinion in structural biology.

[49]  R. Larson Molecular simulation of ordered amphiphilic phases , 1994 .

[50]  Sharon C Glotzer,et al.  Self-assembly of polymer-tethered nanorods. , 2005, Physical review letters.

[51]  John E. Johnson,et al.  Virus Particle Stability and Structure , 1985 .

[52]  George M. Whitesides,et al.  Beyond molecules: Self-assembly of mesoscopic and macroscopic components , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[53]  S. Dai,et al.  Aggregation behavior of two-arm fullerene-containing poly(ethylene oxide) , 2003 .

[54]  M. Pileni,et al.  Triangular CdS Nanocrystals: Structural and Optical Studies , 2001 .

[55]  B. Korgel,et al.  Self‐Assembly of Silver Nanocrystals into Two‐Dimensional Nanowire Arrays , 1998 .

[56]  Francesco Stellacci,et al.  Spontaneous assembly of subnanometre-ordered domains in the ligand shell of monolayer-protected nanoparticles , 2004, Nature materials.

[57]  P. Ahlquist,et al.  RNA-controlled polymorphism in the in vivo assembly of 180-subunit and 120-subunit virions from a single capsid protein. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[58]  Younan Xia,et al.  Shape-Controlled Synthesis of Gold and Silver Nanoparticles , 2002, Science.

[59]  R. Laine,et al.  Synthesis and Characterization of Liquid Crystalline Silsesquioxanes , 2001 .

[60]  W. E. Billups,et al.  Covalent sidewall functionalization of single wall carbon nanotubes. , 2003, Journal of the American Chemical Society.

[61]  P. Pfeiffer,et al.  Aggregation states of brome mosaic virus protein. , 1974, Virology.

[62]  Catherine J. Murphy,et al.  Wet chemical synthesis of silver nanorods and nanowiresof controllable aspect ratio , 2001 .

[63]  Vinothan N Manoharan,et al.  Dense Packing and Symmetry in Small Clusters of Microspheres , 2003, Science.

[64]  Younan Xia,et al.  Large-scale synthesis of silver nanocubes: the role of HCl in promoting cube perfection and monodispersity. , 2005, Angewandte Chemie.

[65]  G. Whitesides,et al.  Patterned Self-Assembled Monolayers and Meso-Scale Phenomena , 1995 .

[66]  Heinrich M. Jaeger,et al.  Hierarchical self-assembly of metal nanostructures on diblock copolymer scaffolds , 2001, Nature.

[67]  W. Zin,et al.  Spontaneous Organization of Supramolecular Rod-Bundles into a Body-Centered Tetragonal Assembly in Coil−Rod−Coil Molecules , 2000 .

[68]  S. Glotzer,et al.  Self-assembled morphologies of monotethered polyhedral oligomeric silsesquioxane nanocubes from computer simulation. , 2005, The Journal of chemical physics.