Generalizations of Capparelli's identity

Using jagged overpartitions, we give three generalizations of a weighted word version of Capparelli's identity due to Andrews, Alladi, and Gordon and present several corollaries.

[1]  A. Meurman,et al.  Annihilating ideals of standard modules of ${rm sl}(2, Bbb C)sp sim$ and combinatorial identities , 1987 .

[2]  M. Schlosser BASIC HYPERGEOMETRIC SERIES , 2007 .

[3]  K. Alladi,et al.  Refinements and Generalizations of Capparelli′s Conjecture on Partitions , 1995 .

[4]  G. Andrews,et al.  Generalizations and refinements of a partition theorem of Göllnitz. , 1995 .

[5]  Alexander Berkovich,et al.  A new companion to Capparelli's identities , 2015, Adv. Appl. Math..

[6]  P. Mathieu,et al.  Jagged Partitions , 2005 .

[7]  A new four parameter q-series identity and its partition implications , 2002, math/0205055.

[8]  Twisted sl(3,C)˜-modules and combinatorial identities , 2017 .

[9]  J. Lovejoy,et al.  On a Rogers-Ramanujan type identity from crystal base theory , 2016, 1612.05423.

[10]  Andrew V. Sills,et al.  On series expansions of Capparelli's infinite product , 2004, Adv. Appl. Math..

[11]  A. Meurman,et al.  Annihilating ideals of standard modules of (2, ) and combinatorial identities , 1987 .

[12]  Manvendra Tamba,et al.  Level three standard modules for A2(2) and combinatorial identities , 1995 .

[13]  J. Lepowsky,et al.  The structure of standard modules, I: Universal algebras and the Rogers-Ramanujan identities , 1984 .

[14]  Jeremy Lovejoy Constant terms, jagged partitions, and partitions with difference two at distance two , 2006 .

[15]  Jeremy Lovejoy A THEOREM ON SEVEN-COLORED OVERPARTITIONS AND ITS APPLICATIONS , 2005 .

[16]  Shishuo Fu,et al.  A unifying combinatorial approach to refined little Göllnitz and Capparelli's companion identities , 2016, Adv. Appl. Math..

[17]  J. Lepowsky,et al.  The structure of standard modules , 1985 .

[18]  S. Capparelli A Construction of the Level 3 Modules for the Affine Lie Algebra ₂⁽²⁾ and a New Combinatorial Identity of the Rogers-Ramanujan Type Amer. Math. Soc. 348 (1996), pp. 481-501. , 1996 .

[19]  Karl Mahlburg,et al.  False theta functions and companions to Capparelli's identities , 2014, 1404.3113.

[20]  J. Lovejoy Asymmetric Generalizations of Schur’s Theorem , 2016 .