Mixing of the upper triangular matrix walk

We study a natural random walk over the upper triangular matrices, with entries in the field $${\mathbb{Z}_2}$$ , generated by steps which add row i + 1 to row i. We show that the mixing time of the lazy random walk is O(n2) which is optimal up to constants. Our proof makes key use of the linear structure of the group and extends to walks on the upper triangular matrices over the fields $${\mathbb{Z}_q}$$ for q prime.

[1]  Perla Sousi,et al.  Mixing Times are Hitting Times of Large Sets , 2011 .

[2]  David J. Aldous,et al.  Lower bounds for covering times for reversible Markov chains and random walks on graphs , 1989 .

[3]  Igor Pak,et al.  Random walk on upper triangular matrices mixes rapidly , 2000 .

[4]  P. Diaconis,et al.  Generating a random permutation with random transpositions , 1981 .

[5]  P. Diaconis,et al.  Moderate growth and random walk on finite groups , 1994 .

[6]  Martin Hildebrand A note on various holding probabilities for random lazy random walks on finite groups , 2002 .

[7]  P. Lezaud Chernoff-type bound for finite Markov chains , 1998 .

[8]  Elizabeth L. Wilmer,et al.  Markov Chains and Mixing Times , 2008 .

[9]  Persi Diaconis,et al.  The Asymmetric One-Dimensional Constrained Ising Model: Rigorous Results , 2002 .

[10]  Persi Diaconis,et al.  An Application of Harnack Inequalities to Random Walk on Nilpotent Quotients , 2020 .

[11]  Persi Diaconis,et al.  Groups St Andrews 2001 in Oxford: Random walks on groups: characters and geometry , 2003 .

[12]  Persi Diaconis,et al.  The asymmetric one-dimensional constrained Ising model , 2001 .

[13]  Richard Stong,et al.  Random Walks on the Groups of Upper Triangular Matrices , 1995 .

[14]  Kinetically constrained spin models , 2006, math/0610106.

[15]  Igor Pak,et al.  Two Random Walks on Upper Triangular Matrices , 2000 .

[16]  L. Saloff-Coste,et al.  Lectures on finite Markov chains , 1997 .

[17]  P. Diaconis,et al.  Nash inequalities for finite Markov chains , 1996 .

[18]  P. Diaconis,et al.  A super-class walk on upper-triangular matrices , 2003 .