Prussian Blue and Its Analogues: Electrochemistry and Analytical Applications

This article reviews fundamental aspects of deposition, structure and electrochemistry of Prussian Blue and its analogues. Special attention is given to the metal hexacyanoferrates with potential analytical applications. Prussian Blue and its analogues as advanced sensing materials for nonelectroactive ions are discussed. In contrast to common ‘smart materials’, the sensitivity and selectivity of metal hexacyanoferrates to such ions is provided by thermodynamic background. Prussian Blue itself is recognized as the most advantageous low-potential transducer for hydrogen peroxide over all known systems. Both high sensitivity (ca. 1 A M−1 cm−2) and selectivity in relation to oxygen reduction are more than three orders of magnitude higher, than for platinum electrodes. Biosensors based on different transducing principles containing enzymes oxidases are compared, and the devices operated due to hydrogen peroxide detection with the Prussian Blue based transducer are shown to be the most advantageous ones. The future prospects of chemical and biological sensors based on metal hexacyanoferrates are outlined.

[1]  A. Malinauskas,et al.  Operational stability of amperometric hydrogen peroxide sensors, based on ferrous and copper hexacyanoferrates , 1999 .

[2]  M. Akashi,et al.  Prussian Blue as an Agent for Decontamination of 137Cs in Radiation Accidents , 1998 .

[3]  M. Lin,et al.  Chromium(III) hexacyanoferrate(II)-based chemical sensor for the cathodic determination of hydrogen peroxide , 1998 .

[4]  S. Dong,et al.  Cobalt(II)hexacyanoferrate film modified glassy carbon electrode for construction of a glucose biosensor , 1999 .

[5]  J. Lo,et al.  A rapid method for the determination of 137Cs in environmental water samples , 1994 .

[6]  R. Koncki,et al.  Optical chemical sensing based on thin films of Prussian Blue , 1998 .

[7]  G. Ciceri,et al.  Copper hexacyanoferate(II) and (III) as trace cesium adsorbers from natural waters , 1987 .

[8]  John Cassidy,et al.  Electrochemical deposition of prussian blue films across interdigital array electrodes and their use in gas sensing , 1996 .

[9]  Hongyuan Chen,et al.  Catalytic oxidation of reduced nicotinamide adenine dinucleotide at a microband gold electrode modified with nickel hexacyanoferrate , 1995 .

[10]  P. Bergveld,et al.  Prussian Blue-coated interdigitated array electrodes for possible analytical application , 1991 .

[11]  F. D. Miles,et al.  Structures and Formulæ of the Prussian Blues and Related Compounds , 1936, Nature.

[12]  E. Wang,et al.  Flow-injection amperometric detection of hydrazine by electrocalytic oxidation at a Prussian Blue film-modified electrode , 1992 .

[13]  Lo Gorton,et al.  The electrocatalytic activity of Prussian blue in hydrogen peroxide reduction studied using a wall-jet electrode with continuous flow , 1998 .

[14]  S. Sriman Narayanan,et al.  STUDIES ON COPPER HEXACYANOFERRATE MODIFIED ELECTRODE AND ITS APPLICATION FOR THE DETERMINATION OF CYSTEINE , 1998 .

[15]  S. Cosnier,et al.  An electrochemical method for making enzyme microsensors. Application to the detection of dopamine and glutamate. , 1997, Analytical chemistry.

[16]  A. Karyakin,et al.  Prussian Blue-based `artificial peroxidase' as a transducer for hydrogen peroxide detection. Application to biosensors , 1999 .

[17]  J. Zen,et al.  Flow injection analysis of hydrogen peroxide on copper-plated screen-printed carbon electrodes , 2000 .

[18]  Ursula E. Spichiger,et al.  Glucose Nanosensor Based on Prussian-Blue Modified Carbon-Fiber Cone Nanoelectrode and an Integrated Reference Electrode , 1999 .

[19]  G. Wallace,et al.  Use of Prussian Blue/Conducting Polymer Modified Electrodes for the Detection of Cytochrome C , 1998 .

[20]  A. Xidis,et al.  PRUSSIAN BLUE SOLID-STATE FILMS AND MEMBRANES AS POTASSIUM ION-SELECTIVE ELECTRODES , 1990 .

[21]  A. Karyakin,et al.  Prussian Blue-Based First-Generation Biosensor. A Sensitive Amperometric Electrode for Glucose , 1995 .

[22]  G. Lubrano,et al.  Glass-metal composite electrodes , 1973 .

[23]  Y. Umezawa,et al.  A cation selective electrode based on copper(II) and nickel(II) hexacyanoferrates: dual response mechanisms, selective uptake or adsorption of analyte cations , 1998 .

[24]  Vernon D. Neff,et al.  Electrochemical Oxidation and Reduction of Thin Films of Prussian Blue , 1978 .

[25]  A. Malinauskas,et al.  Amperometric glucose biosensor based on glucose oxidase immobilized in poly(o-phenylenediamine) layer , 1999 .

[26]  R. Liu,et al.  Flow injection gas-diffusion amperometric determination of trace amounts of ammonium ions with a cupric hexacyanoferrate. , 1996, Talanta.

[27]  A. Turner,et al.  Glucose oxidase: an ideal enzyme , 1992 .

[28]  L. Gorton,et al.  Prussian-Blue-based amperometric biosensors in flow-injection analysis. , 1996, Talanta.

[29]  Xueji Zhang,et al.  Screen Printed Cupric-Hexacyanoferrate Modified Carbon Enzyme Electrode for Single-Use Glucose Measurements , 1999 .

[30]  Junhua Huang,et al.  Determination of Hydrogen Peroxide in Rainwater by Using a Polyaniline Film and Platinum Particles Co-Modified Carbon Fiber Microelectrode , 1998 .

[31]  R. Mortimer,et al.  Voltammetric determination of persulfate anions using an electrode modified with a Prussian blue film , 2000 .

[32]  I. Uchida,et al.  Electrochemistry of polynuclear transition metal cyanides: Prussian blue and its analogues , 1986 .

[33]  A. Malinauskas,et al.  Electrocatalytic reactions of hydrogen peroxide at carbon paste electrodes modified by some metal hexacyanoferrates , 1998 .

[34]  Gao Zhiqiang,et al.  Potassium ion-selective electrode based on a cobalt(II)-hexacyanoferrate film-modified electrode , 1991 .

[35]  W. Kuhr,et al.  Detection of hydrogen peroxide and other molecules of biologicl importance at an electrocataltic surface on a carbon fiber microelectrode , 1997 .

[36]  D. R. Shankaran,et al.  Evaluation of a mechanically immobilized nickel hexacyanoferrate electrode as an amperometric sensor for thiosulfate determination , 1999 .

[37]  Karl Cammann,et al.  Chrono amperometric determination of hydrogen peroxide in swimming pool water using an ultramicroelectrode array , 1998 .

[38]  D. R. Shankaran,et al.  CHEMICALLY MODIFIED SENSOR FOR AMPEROMETRIC DETERMINATION OF SULPHUR DIOXIDE , 1999 .

[39]  Joseph Wang,et al.  Glucose microsensors based on carbon paste enzyme electrodes modified with cupric hexacyanoferrate , 1999 .

[40]  Andrejs Lusis,et al.  Sol-gel produced humidity sensor , 1993 .

[41]  T. Kuwana,et al.  Electrochemical and Spectroscopic Studies of Metal Hexacyanometalate Films I . Cupric Hexacyanoferrate , 1983 .

[42]  M. Eckhoff,et al.  Electrochromism in the mixed-valence hexacyanides. 1. Voltammetric and spectral studies of the oxidation and reduction of thin films of Prussian blue , 1981 .

[43]  F. Scholz,et al.  Hexacyanoferrate-based composite ion-sensitive electrodes for voltammetry , 1996, Analytical and bioanalytical chemistry.

[44]  J. Zhou,et al.  Amperometric detection of catecholamines with liquid chromatography at a novelly constructed prussian blue chemically modified electrode. , 1992, Talanta.

[45]  Shen-ming Chen Electrocatalytic oxidation of thiosulfate by metal hexacyanoferrate film modified electrodes , 1996 .

[46]  Xueji Zhang,et al.  Cobalt and Copper Hexacyanoferrate Modified Carbon Fiber Microelectrode as an All‐Solid Potentiometric Microsensor for Hydrazine , 2000 .

[47]  B. Grabaric,et al.  Glucose determination in blood samples using flow injection analysis and an amperometric biosensor based on glucose oxidase immobilized on hexacyanoferrate modified nickel electrode , 1997 .

[48]  Z. Qian,et al.  Electrochemical Deposition of Prussian Blue from a Single Ferricyanide Solution , 1998 .

[49]  J C Pickup,et al.  Novel hexacyanoferrate (III)-modified carbon electrodes: application in miniaturized biosensors with potential for in vivo glucose sensing. , 1996, Biosensors & bioelectronics.

[50]  Shaojun Dong,et al.  Amperometric biosensors based on the immobilization of oxidases in a Prussian blue film by electrochemical codeposition , 1995 .

[51]  Hongyuan Chen,et al.  The electrochemical characteristics of an inorganic monolayer film modified gold electrode and its molecular recognition of alkali metal cation , 1997 .

[52]  N. Kulagina,et al.  Monitoring glutamate and ascorbate in the extracellular space of brain tissue with electrochemical microsensors. , 1999, Analytical chemistry.

[53]  A. Bocarsly,et al.  Chemically-derivatized nickel surfaces: Synthesis of a new class of stable electrode interfaces , 1982 .

[54]  A. Karyakin,et al.  A High-Sensitive Glucose Amperometric Biosensor Based on Prussian Blue Modified Electrodes , 1994 .

[55]  E. Wang,et al.  Electrocatalytic oxidation and amperometric determination of sulfhydryl compounds at a copper hexacyanoferrate film glassy carbon electrode in liquid chromatography , 1994 .

[56]  R. Baldwin,et al.  Evaluation of electrodes coated with metal hexacyanoferrate as amperometric sensors for nonelectroactive cations in flow systems , 1990 .

[57]  P. Kulesza,et al.  Polynuclear transition metal hexacyanoferrate films: In-situ electrochemical determination of their composition , 1989 .

[58]  P. Bergveld,et al.  Alkali ion sensor based on Prussian blue-covered interdigitated array electrodes , 1991 .

[59]  Peter Fischer,et al.  Neutron diffraction study of Prussian Blue, Fe4[Fe(CN)6]3.xH2O. Location of water molecules and long-range magnetic order , 1980 .

[60]  R. Baldwin,et al.  Amperometric detection of nonelectroactive cations in flow systems at a cupric hexacyanoferrate electrode , 1989 .

[61]  Y. Mishima,et al.  Determination of hydrogen peroxide using a potassium hexacyanoferrate(III) modified titanium dioxide electrode , 1998 .

[62]  J. Cooper,et al.  Glutamate oxidase enzyme electrodes: microsensors for neurotransmitter determination using electrochemically polymerized permselective films , 1995 .

[63]  Hongyuan Chen,et al.  Catalytic oxidation of dopamine at a microdisk platinum electrode modified by electrodeposition of nickel hexacyanoferrate and Nafion , 1996 .

[64]  Lo Gorton,et al.  On the mechanism of H2O2 reduction at Prussian Blue modified electrodes , 1999 .

[65]  T Laurell,et al.  Development of biosensors based on hexacyanoferrates. , 2000, Talanta.

[66]  J. Ibers,et al.  On the Interaction between Hexacyanatoferrate(III) Ions and (a) Hexacyanatoferrate(II) or (b) Iron(III) Ions1a,2 , 1951 .

[67]  Kingo Itaya,et al.  Catalysis of the reduction of molecular oxygen to water at Prussian blue modified electrodes , 1984 .

[68]  W. Shih,et al.  Chromium hexacyanoferrate based glucose biosensor , 1999 .

[69]  L. Gorton,et al.  Sensor for Hydrogen Peroxide Based on Prussian Blue Modified Electrode: Improvement of the Operational Stability , 2000 .

[70]  Kingo Itaya,et al.  Spectroelectrochemistry and electrochemical preparation method of Prussian blue modified electrodes , 1982 .

[71]  L. Gorton,et al.  Amperometric biosensor for glutamate using prussian blue-based "artificial peroxidase" as a transducer for hydrogen peroxide. , 2000, Analytical chemistry.

[72]  A. Solak,et al.  Electrochemical Behavior of Benzo[c]cinnoline-N-oxide at Mercury Electrode , 2000 .

[73]  Marijana Jukić,et al.  Rapid Determination of Oxalate by an Amperometric Oxalate Oxidase‐Based Electrode , 2000 .

[74]  C. Samuelsson,et al.  Adsorption of Caesium in Urine on Copper Hexacyanoferrate(II) - A Contamination Control Kit for Large-Scale In-Situ Use , 1999 .

[75]  T. Ikeshoji Separation of Alkali Metal Ions by Intercalation into a Prussian Blue Electrode , 1986 .

[76]  Hongyuan Chen,et al.  Cobalt hexacyanoferrate modified microband gold electrode and its electrocatalytic activity for oxidation of NADH , 1995 .

[77]  R. Singh,et al.  Solid Membranes of Copper Hriacyanoferrats (III) as Thallium (I) Sensitive Electrode , 1982 .

[78]  R. Koncki,et al.  Composite Films of Prussian Blue and N-Substituted Polypyrroles:  Fabrication and Application to Optical Determination of pH. , 1998, Analytical chemistry.

[79]  E. Grabner,et al.  Copper Hexacyanoferrate-Modified Glassy Carbon: A Novel Type of Potassium-Selective Electrode , 1985 .

[80]  R. Mortimer,et al.  Potentiometric determination of potassium cations using a nickel(II) hexacyanoferrate-modified electrode. , 1999, Talanta.

[81]  M. Lin,et al.  Determination of hydrogen peroxide by utilizing a cobalt(II)hexacyanoferrate‐modified glassy carbon electrode as a chemical sensor , 1997 .

[82]  A. Turner,et al.  Novel hexacyanoferrate(III) modified graphite disc electrodes and their application in enzyme electrodes—Part I , 1997 .

[83]  G. S. Wilson,et al.  Electrochemical oxidation of H2O2 on Pt and Pt + Ir electrodes in physiological buffer and its applicability to H2O2-based biosensors , 1993 .

[84]  M. Jiang,et al.  Electrocatalytic oxidation of thiosulfate on a modified nickel hexacyanoferrate film electrode , 1993 .

[85]  M. Arnold,et al.  Selectivity enhancement for glutamate with a Nafion/glutamate oxidase biosensor. , 1996, Talanta.