Low Multiplication Noise Thin Avalanche Photodiodes

Abstract— Avalanche multiplication and excess noise weremeasured on a series of Al 0 6 Ga 0 4 As p + in + and n + ip + diodes,with avalanche region thickness, ranging from 0.026 m to 0.85m. The results show that the ionization coefficient for electronsis slightly higher than for holes in thick, bulk material. At fixedmultiplication values the excess noise factor was found to decreasewith decreasing , irrespective of injected carrier type. Owingto the wide Al 0 6 Ga 0 4 As bandgap extremely thin devices cansustain very high electric fields, giving rise to very low excess noisefactors, of around 3.3 at a multiplication factor of 15.5in the structure with = 0.026 m. This is the lowest reportedexcess noise at this value of multiplication for devices grown onGaAs substrates. Recursion equation modeling, using both ahard threshold dead space model and one which incorporatesthe detailed history of the ionizing carriers, is used to model thenonlocal nature of impact ionization giving rise to the reductionin excess noise with decreasing . Although the hard thresholddead space model could reproduce qualitatively the experimentalresults better agreement was obtained from the history-dependentmodel.Index Terms— Al Ga

[1]  Xiaodong Yang,et al.  GaInNAs resonant-cavity-enhanced photodetector operating at 1.3 μm , 1999 .

[2]  Joe C. Campbell,et al.  Performance of thin separate absorption, charge, and multiplication avalanche photodiodes , 1998 .

[3]  J.C. Campbell,et al.  Impact ionization characteristics of III-V semiconductors for a wide range of multiplication region thicknesses , 2000, IEEE Journal of Quantum Electronics.

[4]  J. David,et al.  Impact ionization in thin AlxGa1−xAs (x=0.15 and 0.30) p-i-n diodes , 1997 .

[5]  John P. R. David,et al.  Investigation of impact ionization in thin GaAs diodes , 1996 .

[6]  John P. R. David,et al.  Avalanche multiplication noise characteristics in thin GaAs p/sup +/-i-n/sup +/ diodes , 1998 .

[7]  Bahaa E. A. Saleh,et al.  Effect of dead space on gain and noise in Si and GaAs avalanche photodiodes , 1992 .

[8]  W. C. Johnson,et al.  Use of a Schottky barrier to measure impact ionization coefficients in semiconductors , 1973 .

[9]  C. R. Crowell,et al.  Ionization coefficients in semiconductors: A nonlocalized property , 1974 .

[10]  G. E. Stillman,et al.  Impact ionization in AlxGa1−xAs for x=0.1–0.4 , 1988 .

[11]  Aoki,et al.  Electron transport and impact ionization in Si. , 1990, Physical review. B, Condensed matter.

[12]  Bahaa E. A. Saleh,et al.  Effect of dead space on gain and noise double-carrier-multiplication avalanche photodiodes , 1992, Optical Society of America Annual Meeting.

[13]  Karl Hess,et al.  Band-structure-dependent transport and impact ionization in GaAs , 1981 .

[14]  G. Stillman,et al.  The determination of impact ionization coefficients in (100) gallium arsenide using avalanche noise and photocurrent multiplication measurements , 1985, IEEE Transactions on Electron Devices.

[15]  C. Yeh,et al.  Ionization Rates in (AlxGa1−x)As , 1970 .

[16]  P. Wachter,et al.  Optical Properties of GdS,GdSe,GdTeamd LaS , 1974 .

[17]  Bahaa E. A. Saleh,et al.  Dead-space-based theory correctly predicts excess noise factor for thin GaAs and AlGaAs avalanche photodiodes , 2000 .

[18]  R. Mcintyre Multiplication noise in uniform avalanche diodes , 1966 .

[19]  A. Lacaita,et al.  Mean gain of avalanche photodiodes in a dead space model , 1996 .

[20]  Joe C. Campbell,et al.  Noise characteristics of thin multiplication region GaAs avalanche photodiodes , 1996 .

[21]  J. David,et al.  Avalanche multiplication in Al/sub x/Ga/sub 1-x/As (x=0 to 0.60) , 2000 .

[22]  R. J. McIntyre,et al.  A new look at impact ionization-Part I: A theory of gain, noise, breakdown probability, and frequency response , 1999 .