Automata on Infinite Objects and Their Applications to Logic and Programming

Abstract We introduce various types of ω-automata, top-down automata and bottom-up automata on infinite trees. We study the power of determinstic and nondeterministic tree automata and prove that deterministic and non-deterministic bottom-up tree automata accept the same infinite tree sets. We establish a relationship between tree automata, Logic programs, recursive program schemes, and the monadic second-order theory of the tree. We prove that the equivalence of two rational logic programs is decidable.

[1]  Robert A. Kowalski,et al.  Algorithm = logic + control , 1979, CACM.

[2]  Charles Rackoff,et al.  The Emptiness Problem for Automata on Infinite Trees , 1972, SWAT.

[3]  David Harel,et al.  First-Order Dynamic Logic , 1979, Lecture Notes in Computer Science.

[4]  Wolfgang Thomas A hierarchy of sets of infinite trees , 1983, Theoretical Computer Science.

[5]  J. R. Büchi On a Decision Method in Restricted Second Order Arithmetic , 1990 .

[6]  M. Rabin Decidability of second-order theories and automata on infinite trees. , 1969 .

[7]  M. Rabin Weakly Definable Relations and Special Automata , 1970 .

[8]  Yuri Gurevich,et al.  Trees, automata, and games , 1982, STOC '82.

[9]  David Park,et al.  Concurrency and Automata on Infinite Sequences , 1981, Theoretical Computer Science.

[10]  Andrzej Wlodzimierz Mostowski,et al.  Regular expressions for infinite trees and a standard form of automata , 1984, Symposium on Computation Theory.

[11]  Robert McNaughton,et al.  Testing and Generating Infinite Sequences by a Finite Automaton , 1966, Inf. Control..

[12]  Samuel Eilenberg,et al.  Automata, languages, and machines. A , 1974, Pure and applied mathematics.

[13]  Maurice Nivat,et al.  Ensembles reconnaissables de mots biinfinis , 1986 .

[14]  A. Prasad Sistla,et al.  Deciding branching time logic , 1984, STOC '84.

[15]  Ahmed Saoudi Infinitary Tree Languages Recognized by omega-Automata , 1984, Inf. Process. Lett..

[16]  Wolfgang Thomas,et al.  A hierarchy of sets of infinite trees , 1983 .

[17]  Masako Takahashi,et al.  The Greatest Fixed-Points and Rational Omega-Tree Languages , 1986, Theor. Comput. Sci..

[18]  Rina S. Cohen,et al.  Theory of omega-Languages. II. A Study of Various Models of omega-Type Generation and Recognition , 1977, J. Comput. Syst. Sci..

[19]  Albert R. Meyer,et al.  Definability in Dynamic Logic , 1980, STOC '80.

[20]  Maurice Nivat,et al.  The metric space of infinite trees. Algebraic and topological properties , 1980, Fundam. Informaticae.

[21]  Andrzej Wlodzimierz Mostowski Determinancy of Sinking Automata on Infinite Trees and Inequalities Between Various Rabin's Pair Indices , 1982, Inf. Process. Lett..

[22]  Albert R. Meyer,et al.  Definability in Dynamic Logic , 1981, J. Comput. Syst. Sci..

[23]  Mordechai Ben-Ari,et al.  The temporal logic of branching time , 1981, POPL '81.

[24]  Zamir Bavel,et al.  Characterization of State-Independent Automata , 1986, Theor. Comput. Sci..

[25]  Masako Takahashi,et al.  A Note on omega-Regular Languages , 1983, Theor. Comput. Sci..

[26]  Assaf J. Kfoury,et al.  Definability by Deterministic and Non-deterministic Programs (with Applications to First-Order Dynamic Logic) , 1985, Inf. Control..

[27]  David E. Muller,et al.  Infinite sequences and finite machines , 1963, SWCT.

[28]  Yaacov Choueka,et al.  Theories of Automata on omega-Tapes: A Simplified Approach , 1974, J. Comput. Syst. Sci..

[29]  B. Courcelle Fundamental properties of infinite trees , 1983 .

[30]  S. Sieber On a decision method in restricted second-order arithmetic , 1960 .

[31]  Mordechai Ben-Ari,et al.  The Temporal Logic of Branching Time , 1981, POPL.

[32]  Walter S. Brainerd,et al.  The Minimalization of Tree Automata , 1968, Inf. Control..