Distributions of points in the unit-square and large k-gons

We consider a generalization of Heilbronn's triangle problem by asking, given any integers <i>n</i> ≥ <i>k</i> ≥ 3, for the supremum Δ<inf><i>k</i></inf>(<i>n</i>) of the minimum area determined by the convex hull of some <i>k</i> of <i>n</i> points in the unit-square [0, 1]<sup>2</sup>, where the supremum is taken over all distributions of <i>n</i> points in [0, 1]<sup>2</sup>. Improving the lower bound Δ<inf><i>k</i></inf>(<i>n</i>) = Ω(1/n<sup>(<i>k</i>-1)/(<i>k</i>-2}</sup>) from [5] and from [20] for <i>k</i> = 4, we will show that Δ<inf><i>k</i></inf>(<i>n</i>) = Ω((log <i>n</i>)<sup>1/(<i>k</i>-2)</sup>/<i>n</i><sup>(<i>k</i>-1)/(<i>k</i>-2)</sup> for each fixed integer <i>k</i> ≥ 3 as asked for in [5]. We will also provide a deterministic polynomial time algorithm which finds <i>n</i> points in the unit-square [0, 1]<sup>2</sup> achieving this lower bound.

[1]  K. F. Roth On a Problem of Heilbronn, III , 1972 .

[2]  Hanno Lefmann,et al.  A Deterministic Polynomial-Time Algorithm for Heilbronn's Problem in Three Dimensions , 2002, SIAM J. Comput..

[3]  B. Chazelle Lower bounds on the complexity of polytope range searching , 1989 .

[4]  K. F Roth Developments in Heilbronn's triangle problem , 1976 .

[5]  Vojtech Rödl,et al.  On Uncrowded Hypergraphs , 1995, Random Struct. Algorithms.

[6]  Hanno Lefmann,et al.  An Algorithm for Heilbronn's Problem , 1997, COCOON.

[7]  Tao Jiang,et al.  The average-case area of Heilbronn-type triangles , 2002, Random Struct. Algorithms.

[8]  Hanno Lefmann On Heilbronn’s Problem in Higher Dimension , 2000, SODA '00.

[9]  Endre Szemerédi,et al.  On Heilbronn's Triangle Problem , 1981 .

[10]  Peter Braß An Upper Bound for the d-Dimensional Analogue of Heilbronn's Triangle Problem , 2005, SIAM J. Discret. Math..

[11]  Gill Barequet,et al.  Heilbronn's triangle problem , 2007, SCG '07.

[12]  K. F. Roth On a Problem of Heilbronn , 1951 .

[13]  Andrés D. Fundia Derandomizing Chebyshev's inequality to find independent sets in uncrowded hypergraphs , 1996 .

[14]  Gill Barequet A lower bound for Hellbronn's triangle problem in d dimensions , 1999, SODA '99.

[15]  János Komlós,et al.  Extremal Uncrowded Hypergraphs , 1982, J. Comb. Theory, Ser. A.

[16]  Hanno Lefmann,et al.  The algorithmic aspects of uncrowded hypergraphs , 1997, SODA '97.

[17]  E. Szemerédi,et al.  A Lower Bound for Heilbronn'S Problem , 1982 .

[18]  Gill Barequet The on-line Heilbronn's triangle problem , 2004, Discret. Math..

[19]  Hanno Lefmann Distributions of Points and Large Quadrangles , 2004, ISAAC.

[20]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.