Prioritizing the Application of DFM Guidelines Based on the Detectability of Systematic Defects

A methodology using design-for-manufacturability (DFM) layout guidelines as a basis for modeling and detecting systematic defects was proposed earlier. In this paper, we show that this methodology can be extended to prioritize layout locations according to the importance of applying DFM guidelines to them. Prioritization is done based on test considerations including coverage and test set size. In particular, this methodology can identify layout locations where failure to follow a DFM guideline may result in test holes due to hard-to-detect defects. The prioritized list can be used by layout tools to create circuits that are easier to test.

[1]  Sreejit Chakravarty,et al.  Transition tests for high performance microprocessors , 2005, 23rd IEEE VLSI Test Symposium (VTS'05).

[2]  Srinivas Patil,et al.  Scan-based transition test , 1993, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[3]  Edward J. McCluskey,et al.  An experimental chip to evaluate test techniques experiment results , 1995, Proceedings of 1995 IEEE International Test Conference (ITC).

[4]  John Paul Shen,et al.  Extraction and simulation of realistic CMOS faults using inductive fault analysis , 1988, International Test Conference 1988 Proceeding@m_New Frontiers in Testing.

[5]  Phil Nigh,et al.  Test method evaluation experiments and data , 2000, Proceedings International Test Conference 2000 (IEEE Cat. No.00CH37159).

[6]  Andrzej J. Strojwas,et al.  A diagnosability metric for parametric path delay faults , 1996, Proceedings of 14th VLSI Test Symposium.

[7]  Brian Taylor,et al.  Automated Testability Enhancements for Logic Brick Libraries , 2008, 2008 Design, Automation and Test in Europe.

[8]  Chandra Tirumurti,et al.  On modeling crosstalk faults , 2005, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems.

[9]  Anne Gattiker,et al.  Random and systematic defect analysis using IDDQ signature analysis for understanding fails and guiding test decisions , 2004 .

[10]  M. E. Levitt,et al.  Physical design of testable VLSI: techniques and experiments , 1990 .

[11]  Irith Pomeranz,et al.  Testing for systematic defects based on DFM guidelines , 2007, 2007 IEEE International Test Conference.

[12]  Tracy Larrabee,et al.  Diagnosing realistic bridging faults with single stuck-at information , 1998, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[13]  Mehrdad Nourani,et al.  Modeling and Testing Process Variation in Nanometer CMOS , 2006, 2006 IEEE International Test Conference.

[14]  Enamul Amyeen,et al.  An experimental study of N-detect scan ATPG patterns on a processor , 2004, 22nd IEEE VLSI Test Symposium, 2004. Proceedings..

[15]  Gordon L. Smith,et al.  Model for Delay Faults Based upon Paths , 1985, ITC.

[16]  Edward J. McCluskey,et al.  Stuck-fault tests vs. actual defects , 2000, Proceedings International Test Conference 2000 (IEEE Cat. No.00CH37159).

[17]  Leendert M. Huisman,et al.  Data mining integrated circuit fails with fail commonalities , 2004, 2004 International Conferce on Test.

[18]  Irith Pomeranz,et al.  A test generation procedure for avoiding the detection of functionally redundant transition faults , 2006, 24th IEEE VLSI Test Symposium.

[19]  Wojciech Maly,et al.  Deformations of ic structure in test and yield learning , 2003, International Test Conference, 2003. Proceedings. ITC 2003..

[20]  Edward J. McCluskey,et al.  Gate exhaustive testing , 2005, IEEE International Conference on Test, 2005..

[21]  Giovanni Squillero,et al.  RT-Level ITC'99 Benchmarks and First ATPG Results , 2000, IEEE Des. Test Comput..

[22]  Irith Pomeranz,et al.  MIX: a test generation system for synchronous sequential circuits , 1998, Proceedings Eleventh International Conference on VLSI Design.

[23]  C. Hora,et al.  Systematic defects in deep sub-micron technologies , 2004 .

[24]  R. D. Blanton,et al.  Analyzing the effectiveness of multiple-detect test sets , 2003, International Test Conference, 2003. Proceedings. ITC 2003..

[25]  James E. Stine,et al.  A framework for high-level synthesis of system on chip designs , 2005, 2005 IEEE International Conference on Microelectronic Systems Education (MSE'05).

[26]  Raimund Ubar,et al.  Defect-oriented test- and layout-generation for standard-cell ASIC designs , 2005, 8th Euromicro Conference on Digital System Design (DSD'05).

[27]  Sreejit Chakravarty,et al.  A scalable and efficient methodology to extract two node bridges from large industrial circuits , 2000, Proceedings International Test Conference 2000 (IEEE Cat. No.00CH37159).

[28]  Brady Benware,et al.  In search of the optimum test set - adaptive test methods for maximum defect coverage and lowest test cost , 2004 .

[29]  Camelia Hora,et al.  Systematic defects in deep sub-micron technologies , 2004, 2004 International Conferce on Test.

[30]  Jingjing Xu,et al.  A systematic DFT procedure for library cells , 1999, Proceedings 17th IEEE VLSI Test Symposium (Cat. No.PR00146).

[31]  W. Robert Daasch,et al.  In search of the optimum test set - adaptive test methods for maximum defect coverage and lowest test cost , 2004, 2004 International Conferce on Test.

[32]  Robert C. Aitken,et al.  Test sets and reject rates: all fault coverages are not created equal , 1993, IEEE Design & Test of Computers.

[33]  S. Jayaraman,et al.  Experimental evaluation of bridge patterns for a high performance microprocessor , 2005, 23rd IEEE VLSI Test Symposium (VTS'05).

[34]  A. Nazer,et al.  Transient current testing of dynamic CMOS circuits in the presence of leakage and process variation , 2004, Proceedings. The 16th International Conference on Microelectronics, 2004. ICM 2004..