Computation of plane potential flow past multi-element airfoils using conformal mapping, revisited

Abstract We revisit methods for computing flow over single and multi-element airfoils using more recently developed numerical methods for conformal mapping for simply and multiply connected domains. The corners at the trailing edges of the airfoils are successively removed by Karman–Trefftz maps. The map from the domain exterior to disks to the domain exterior to the smooth images of the airfoils is computed using extensions of a Fourier series method for the disk due to Fornberg. The velocity potential for flow in the circle domain, with circulation calculated to satisfy the Kutta condition in the airfoil domain, is computed by a reflection method based on the Milne-Thomson Circle Theorem. Convergence of the reflection method is proven if the domains are sufficiently well-separated.

[1]  L. C. Woods The theory of subsonic plane flow , 1961 .

[2]  THOMAS K. DELILLO,et al.  SLIT MAPS AND SCHWARZ-CHRISTOFFEL MAPS FOR MULTIPLY CONNECTED DOMAINS , 2010 .

[3]  Henry C. Thacher,et al.  Applied and Computational Complex Analysis. , 1988 .

[4]  A. Zemlyanova,et al.  Vortex generated fluid flows in multiply connected domains , 2016, 1610.00599.

[5]  Thomas K. DeLillo,et al.  A simplified Fornberg-like method for the conformal mapping of multiply connected regions-Comparisons and crowding , 2007 .

[6]  N. D. Halsey,et al.  Potential Flow Analysis of Multielement Airfoils Using Conformal Mapping , 1979 .

[7]  Y. Antipov,et al.  Circular map for supercavitating flow in a multiply connected domain , 2009 .

[8]  Thomas K. DeLillo,et al.  Efficient Calculation of Schwarz–Christoffel Transformations for Multiply Connected Domains Using Laurent Series , 2013 .

[9]  Stephen Childress,et al.  An Introduction to Theoretical Fluid Mechanics , 2009 .

[10]  Mohamed Badreddine,et al.  A Comparison of some numerical conformal mapping methods for simply and multiply connected domains , 2019, Discrete & Continuous Dynamical Systems - B.

[11]  P.A.A. Laura Computation of fluid motions in multiply connected domains: by W. J. Prosnak. Published by Braun, Karlsruhe (Wissenschaft Technik), 1987, 336 pp. Cost: U.S. $72.00 , 1994 .

[12]  B. Fornberg A Numerical Method for Conformal Mappings , 1980 .

[13]  W. Burnside On a Class of Automorphic Functions , 1891 .

[14]  Tobin A. Driscoll,et al.  Radial and circular slit maps of unbounded multiply connected circle domains , 2008, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[15]  D. Acheson Elementary Fluid Dynamics , 1990 .

[16]  THOMAS K. DELILLO,et al.  A Comparison of some Numerical Conformal Mapping Methods for Exterior Regions , 1991, SIAM J. Sci. Comput..

[17]  R. Wegmann Fast conformal mapping of multiply connected regions , 2001 .

[18]  Thomas K. DeLillo,et al.  Numerical Conformal Mapping Methods for Simply and Doubly Connected Regions , 1998, SIAM J. Sci. Comput..

[19]  R. Menikoff,et al.  Methods for numerical conformal mapping , 1980 .

[20]  Darren Crowdy,et al.  Analytical solutions for uniform potential flow past multiple cylinders , 2006 .

[21]  A. Fokas,et al.  Complex Variables: Introduction and Applications , 1997 .

[22]  A. Elcrat,et al.  Schwarz-Christoffel mapping of multiply connected domains , 2004 .

[23]  I. H. Abbott,et al.  Theory of Wing Sections: Including a Summary of Airfoil Data , 1959 .

[24]  John H. Mathews,et al.  Complex analysis for mathematics and engineering , 1995 .

[25]  Y. Antipov,et al.  Method of automorphic functions in the study of flow around a stack of porous cylinders , 2007 .

[26]  Christopher C. Green,et al.  The Schottky–Klein prime function: a theoretical and computational tool for applications , 2016 .

[27]  I. M. Hall,et al.  Test cases for the plane potential flow past multi-element aerofoils , 1985, The Aeronautical Journal (1968).

[28]  W. J. Duncan Theoretical Aerodynamics , 1948, Nature.