4- and 6-GS/s 4-bit frequency-translating hybrid ADCs in 90-nm CMOS

Two frequency-translating hybrid analog-to-digital converters (FTH-ADCs) are implemented using building blocks that are designed and fabricated in a 90-nm CMOS technology. These blocks include a mixer, a filter, and an ADC that are cascaded to build each analog processing path of the FTH-ADC. The mixer-filter path is designed with sufficient linearity and signal-to-noise-and-distortion ratio (SNDR) to accommodate for the desired resolution of the path ADC. A 4-bit flash ADC structure is used in each path. This path has a signal bandwidth of 0.5 GHz and frequency-translates the input signal into baseband and digitizes it with the sample rate of 2 GHz. Multiple such mixer-filter-ADC paths are then combined together with proper mixing frequencies in order to implement two- and three-channel ADC systems. The two- and three-channel systems have overall input bandwidths of 2 and 3 GHz and effective conversion rates of 4 and 6 GS/s, respectively, while maintaining their single-path resolution across their entire input bandwidths. The implemented architecture provides an extendible solution to improve the speed of ADCs by incorporating them in an FTH-ADC architecture.

[1]  W. Black,et al.  Time interleaved converter arrays , 1980, 1980 IEEE International Solid-State Circuits Conference. Digest of Technical Papers.

[2]  Francois Krummenacher,et al.  A 4-MHz CMOS Continuous-Time Filter with On-Chip Automatic Tuning , 1987, ESSCIRC '87: 13th European Solid-State Circuits Conference.

[3]  Sanjit K. Mitra,et al.  High-speed A/D conversion incorporating a QMF bank , 1992 .

[4]  Behzad Razavi,et al.  Principles of Data Conversion System Design , 1994 .

[5]  Michiel Steyaert,et al.  A 1.5 GHz highly linear CMOS downconversion mixer , 1995, IEEE J. Solid State Circuits.

[6]  Ian Galton,et al.  Delta-Sigma modulator based A/D conversion without oversampling , 1995 .

[7]  Ardie G. W. Venes,et al.  An 80-MHz, 80-mW, 8-b CMOS folding A/D converter with distributed track-and-hold preprocessing , 1996 .

[8]  K. Jenkins,et al.  Microwave inductors and capacitors in standard multilevel interconnect silicon technology , 1996 .

[9]  Behzad Razavi,et al.  RF Microelectronics , 1997 .

[10]  Truong Q. Nguyen,et al.  Design of hybrid filter banks for analog/digital conversion , 1998, IEEE Trans. Signal Process..

[11]  Robert H. Walden,et al.  Analog-to-digital converter survey and analysis , 1999, IEEE J. Sel. Areas Commun..

[12]  Y. Tamba,et al.  A CMOS 6 b 500 MSample/s ADC for a hard disk drive read channel , 1999, 1999 IEEE International Solid-State Circuits Conference. Digest of Technical Papers. ISSCC. First Edition (Cat. No.99CH36278).

[13]  Y.P. Tsividis,et al.  Widely programmable high-frequency continuous-time filters in digital CMOS technology , 2000, IEEE Journal of Solid-State Circuits.

[14]  N. Weste,et al.  A 500 MHz CMOS anti-alias filter using feed-forward op-amps with local common-mode feedback , 2003 .

[15]  B. Wooley,et al.  A 40-GHz-bandwidth, 4-bit, time-interleaved A/D converter using photoconductive sampling , 2003, IEEE J. Solid State Circuits.

[16]  Terri S. Fiez,et al.  A comparative analysis of parallel delta-sigma ADC architectures , 2004, IEEE Transactions on Circuits and Systems I: Regular Papers.

[17]  Won Namgoong,et al.  A 0.25 /spl mu/m CMOS 3b 12.5 GS/s frequency channelized receiver for serial-links , 2005, ISSCC. 2005 IEEE International Digest of Technical Papers. Solid-State Circuits Conference, 2005..

[18]  Brian M. Sadler,et al.  Ultra-wideband analog-to-digital conversion via signal expansion , 2005, IEEE Transactions on Vehicular Technology.

[19]  Yorgos Palaskas,et al.  A 4GS/S 4b flash ADC in 0.16μm CMOS , 2006 .

[20]  Michael P. Flynn,et al.  A 3.5 GS/s 5-b Flash ADC in 90 nm CMOS , 2006, IEEE Custom Integrated Circuits Conference 2006.

[21]  Shahriar Mirabbasi,et al.  A Frequency-Translating Hybrid Architecture for Wide-Band Analog-to-Digital Converters , 2007, IEEE Transactions on Circuits and Systems II: Express Briefs.

[22]  S. Mirabbasi,et al.  A prototype implementation of a two-channel frequency-translating hybrid ADC , 2007, 2007 50th Midwest Symposium on Circuits and Systems.

[23]  Shahriar Mirabbasi,et al.  A 43 mW single-channel 4GS/s 4-bit flash ADC in 0.18 μm CMOS , 2007, 2007 IEEE Custom Integrated Circuits Conference.

[24]  M. Aberg,et al.  A DLL clock generator for a high speed A/D-converter with 1 ps jitter and skew calibrator with 1 ps precision in 0.35 μm CMOS , 2007 .

[25]  Boris Murmann,et al.  A/D converter trends: Power dissipation, scaling and digitally assisted architectures , 2008, 2008 IEEE Custom Integrated Circuits Conference.

[26]  Carlos E. Saavedra,et al.  Feedforward-Regulated Cascode OTA for Gigahertz Applications , 2008, IEEE Transactions on Circuits and Systems I: Regular Papers.

[27]  Mau-Chung Frank Chang,et al.  A 600-MSPS 8-bit CMOS ADC Using Distributed Track-and-Hold With Complementary Resistor/Capacitor Averaging , 2008, IEEE Transactions on Circuits and Systems I: Regular Papers.

[28]  Ali Beydoun,et al.  Extended frequency-band-decomposition sigma–delta A/D converter , 2009 .

[29]  Atila Alvandpour,et al.  A 6-bit 2.5-GS/s flash ADC using comparator redundancy for low power in 90 nm CMOS , 2010 .

[30]  Ali Beydoun,et al.  A self-calibration scheme for extended frequency-band-decomposition sigma-delta ADC , 2010 .

[31]  Shahriar Mirabbasi,et al.  Digital Compensation Techniques for Frequency-Translating Hybrid Analog-to-Digital Converters , 2011, IEEE Transactions on Instrumentation and Measurement.