Iterative real-time path integral approach to nonequilibrium quantum transport

We have developed a numerical approach to compute real-time path integral expressions for quantum transport problems out of equilibrium. The scheme is based on a deterministic iterative summation of the path integral (ISPI) for the generating function of the nonequilibrium current. Self-energies due to the leads, being non-local in time, are fully taken into account within a finite memory time, thereby including non-Markovian effects, and numerical results are extrapolated both to vanishing (Trotter) time discretization and to infinite memory time. This extrapolation scheme converges except at very low temperatures, and the results are then numerically exact. The method is applied to nonequilibrium transport through an Anderson dot.

[1]  Henrik Bruus,et al.  Many-body quantum theory in condensed matter physics - an introduction , 2004 .

[2]  N. Hatano,et al.  Resonance in an Open Quantum Dot System with a Coulomb Interaction: a Bethe-Ansatz Approach , 2007, 0705.3994.

[3]  M. Grifoni,et al.  Dynamics of the spin-boson model with a structured environment , 2004 .

[4]  Transport coefficients of the Anderson model via the numerical renormalization group , 1993, cond-mat/9310032.

[5]  Nancy Makri,et al.  Path integrals for dissipative systems by tensor multiplication. Condensed phase quantum dynamics for arbitrarily long time , 1994 .

[6]  Hershfield,et al.  Exactly solvable nonequilibrium Kondo problem. , 1995, Physical review. B, Condensed matter.

[7]  F. Evers,et al.  Exact ground state density-functional theory for impurity models coupled to external reservoirs and transport calculations. , 2007, Physical review letters.

[8]  Crossover from nonadiabatic to adiabatic electron transfer reactions: Multilevel blocking Monte Carlo simulations , 2002, cond-mat/0205400.

[9]  N. Makri,et al.  TENSOR PROPAGATOR FOR ITERATIVE QUANTUM TIME EVOLUTION OF REDUCED DENSITY MATRICES. I: THEORY , 1995 .

[10]  Philip W. Anderson,et al.  Localized Magnetic States in Metals , 1961 .

[11]  A. M. Tsvelick,et al.  Exact results in the theory of magnetic alloys , 1983 .

[12]  Fye Rm New results on Trotter-like approximations. , 1986 .

[13]  C. H. Mak,et al.  A multilevel blocking approach to the sign problem in real-time quantum Monte Carlo simulations , 1999 .

[14]  D. Hamann New Solution for Exchange Scattering in Dilute Alloys , 1967 .

[15]  Meir,et al.  Landauer formula for the current through an interacting electron region. , 1992, Physical review letters.

[16]  N. D. Lang,et al.  Measurement of the conductance of a hydrogen molecule , 2002, Nature.

[17]  K. Ueda,et al.  Out-of-Equilibrium Transport Phenomena through a Quantum Dot in a Magnetic Field , 2005 .

[18]  U. Weiss Quantum Dissipative Systems , 1993 .

[19]  Mark A. Ratner,et al.  Molecular transport junctions: vibrational effects , 2006 .

[20]  P. Schmitteckert,et al.  Strong enhancement of transport by interaction on contact links , 2007, 0704.1917.

[21]  A. Rosch,et al.  The Kondo Effect in Non-Equilibrium Quantum Dots: Perturbative Renormalization Group , 2004, cond-mat/0408506.

[22]  R. Feynman,et al.  The Theory of a general quantum system interacting with a linear dissipative system , 1963 .

[23]  Mak,et al.  Path-integral Monte Carlo simulations without the sign problem: multilevel blocking approach for effective actions , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[24]  P. Jung,et al.  Dynamical Hysteresis in Bistable Quantum Systems , 1997 .

[25]  E. Mucciolo,et al.  Non-Markovian dynamics of double quantum dot charge qubits due to acoustic phonons , 2005 .

[26]  A. Rosch,et al.  Nonequilibrium transport through a Kondo dot in a magnetic field: perturbation theory and poor man's scaling. , 2002, cond-mat/0202404.

[27]  G. Vidal,et al.  Time-dependent density-matrix renormalization-group using adaptive effective Hilbert spaces , 2004 .

[28]  Quantum steps in hysteresis loops , 1998 .

[29]  R. Fox,et al.  Quantum hysteresis and resonant tunneling in bistable systems , 1998 .

[30]  Jong E Han,et al.  Imaginary-time formulation of steady-state nonequilibrium: application to strongly correlated transport. , 2007, Physical review letters.

[31]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[32]  R. Egger,et al.  Superconducting nonequilibrium transport through a weakly interacting quantum dot , 2008, 0801.1750.

[33]  Nonequilibrium functional renormalization group for interacting quantum systems. , 2007, Physical review letters.

[34]  Henri Orland,et al.  Quantum Many-Particle Systems , 1988 .

[35]  A. Millis,et al.  Electronic correlation in nanoscale junctions: Comparison of the GW approximation to a numerically exact solution of the single-impurity Anderson model , 2007, Physical Review B.

[36]  T. Costi Renormalization-group approach to nonequilibrium Green functionsin correlated impurity systems , 1997 .

[37]  Eran Rabani,et al.  Real-time path integral approach to nonequilibrium many-body quantum systems. , 2007, Physical review letters.

[38]  E. Scheer,et al.  Mechanically controllable break-junctions for use as electrodes for molecular electronics , 2004 .

[39]  T. Heinzel Mesoscopic electronics in solid state nanostructures , 2003 .

[40]  R Ochs,et al.  Driving current through single organic molecules. , 2001, Physical review letters.

[41]  N. Andrei,et al.  Nonequilibrium transport in quantum impurity models: the Bethe ansatz for open systems. , 2005, Physical review letters.

[42]  B. Lazarovits,et al.  Failure of the mean-field approach in the out-of-equilibrium Anderson model , 2007, 0712.0296.

[43]  Hans De Raedt,et al.  Applications of the generalized Trotter formula , 1983 .

[44]  J. Hubbard Calculation of Partition Functions , 1959 .

[45]  Reimann,et al.  Iterative algorithm versus analytic solutions of the parametrically driven dissipative quantum harmonic oscillator , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[46]  A. Millis,et al.  Coulomb gas on the Keldysh contour: Anderson-Yuval-Hamann representation of the nonequilibrium two-level system , 2007, 0705.2341.

[47]  Wilkins,et al.  Resonant tunneling through an Anderson impurity. I. Current in the symmetric model. , 1992, Physical review. B, Condensed matter.

[48]  J. E. Hirsch,et al.  Discrete Hubbard-Stratonovich transformation for fermion lattice models , 1983 .

[49]  Paul L. McEuen,et al.  Nanomechanical oscillations in a single-C60 transistor , 2000, Nature.

[50]  Avraham Schiller,et al.  Spin precession and real-time dynamics in the Kondo model:Time-dependent numerical renormalization-group study , 2006 .

[51]  N. Makri,et al.  Tensor propagator for iterative quantum time evolution of reduced density matrices. II. Numerical methodology , 1995 .

[52]  S. Kehrein Scaling and decoherence in the nonequilibrium Kondo model. , 2004, Physical review letters.

[53]  M. Thorwart,et al.  Phonon-induced decoherence and dissipation in donor-based charge qubits , 2006 .

[54]  Fye,et al.  Monte Carlo method for magnetic impurities in metals. , 1986, Physical review letters.

[55]  H. Smith,et al.  Quantum field-theoretical methods in transport theory of metals , 1986 .

[56]  Oguri,et al.  Kondo resonance in tunneling phenomena through a single quantum level. , 1995, Physical review. B, Condensed matter.

[57]  The Kondo Effect in a Quantum Dot out of Equilibrium , 2000, cond-mat/0003353.

[58]  Angel Rubio,et al.  Conserving GW scheme for nonequilibrium quantum transport in molecular contacts , 2007, 0710.0482.

[59]  N. Makri Numerical path integral techniques for long time dynamics of quantum dissipative systems , 1995 .