Ultraclean emission from InAsP quantum dots in defect-free wurtzite InP nanowires.

We report on the ultraclean emission from single quantum dots embedded in pure wurtzite nanowires. Using a two-step growth process combining selective-area and vapor-liquid-solid epitaxy, we grow defect-free wurtzite InP nanowires with embedded InAsP quantum dots, which are clad to diameters sufficient for waveguiding at λ ~ 950 nm. The absence of nearby traps, at both the nanowire surface and along its length in the vicinity of the quantum dot, manifests in excitonic transitions of high spectral purity. Narrow emission line widths (30 μeV) and very-pure single photon emission with a probability of multiphoton emission below 1% are achieved, both of which were not possible in previous work where stacking fault densities were significantly higher.

[1]  E. Knill,et al.  A scheme for efficient quantum computation with linear optics , 2001, Nature.

[2]  G. O. Dias,et al.  Valence-band splitting energies in wurtzite InP nanowires: Photoluminescence spectroscopy and ab initio calculations , 2010 .

[3]  Dan Dalacu,et al.  Selective-area vapor-liquid-solid growth of tunable InAsP quantum dots in nanowires , 2011 .

[4]  Federico Capasso,et al.  Optical properties of rotationally twinned InP nanowire heterostructures. , 2008, Nano letters.

[5]  C. Bougerol,et al.  Subnanosecond spectral diffusion of a single quantum dot in a nanowire , 2011, 1105.0774.

[6]  Elisabeth Müller,et al.  Optically bright quantum dots in single Nanowires. , 2005, Nano letters.

[7]  P Lalanne,et al.  Solid-state single photon sources: the nanowire antenna. , 2009, Optics express.

[8]  W. Mckinnon,et al.  Single electron charging in deterministically positioned InAs/InP quantum dots , 2009 .

[9]  R. M. Stevenson,et al.  Inversion of exciton level splitting in quantum dots , 2005 .

[10]  Dan Dalacu,et al.  Selective-area vapour–liquid–solid growth of InP nanowires , 2009, Nanotechnology.

[11]  V. Zwiller,et al.  Bright single-photon sources in bottom-up tailored nanowires , 2012, Nature Communications.

[12]  A. Cantarero,et al.  Ab initio electronic band structure calculation of InP in the wurtzite phase , 2011 .

[13]  P. Caroff,et al.  Crystal Phases in III--V Nanowires: From Random Toward Engineered Polytypism , 2011, IEEE Journal of Selected Topics in Quantum Electronics.

[14]  Philippe Lalanne,et al.  Inhibition, enhancement, and control of spontaneous emission in photonic nanowires. , 2011, Physical review letters.

[15]  Philippe Caroff,et al.  Diameter Dependence of the Wurtzite-Zinc Blende Transition in InAs Nanowires , 2010 .

[16]  V. Zwiller,et al.  Crystal phase quantum dots. , 2010, Nano letters.

[17]  Tobias Heindel,et al.  Single photon emission from positioned GaAs/AlGaAs photonic nanowires , 2010 .

[18]  Val Zwiller,et al.  Electric field induced removal of the biexciton binding energy in a single quantum dot. , 2011, Nano letters.

[19]  G. Patriarche,et al.  Growth temperature dependence of exciton lifetime in wurtzite InP nanowires grown on silicon substrates , 2012 .

[20]  A. A. Gorbunov,et al.  Fine structure of neutral and charged excitons in self-assembled In(Ga)As/(Al)GaAs quantum dots , 2002 .

[21]  L. Largeau,et al.  Type II heterostructures formed by zinc-blende inclusions in InP and GaAs wurtzite nanowires , 2010 .

[22]  C. Bougerol,et al.  A high-temperature single-photon source from nanowire quantum dots. , 2008, Nano letters (Print).

[23]  Michael E. Reimer,et al.  Spontaneous emission control of single quantum dots in bottom-up nanowire waveguides , 2012 .

[24]  Paul Voisin,et al.  Influence of an in-plane electric field on exciton fine structure in InAs-GaAs self-assembled quantum dots , 2005 .

[25]  N. Gregersen,et al.  A highly efficient single-photon source based on a quantum dot in a photonic nanowire , 2010 .

[26]  P Lalanne,et al.  Efficient photonic mirrors for semiconductor nanowires. , 2008, Optics letters.

[27]  Lyubov V. Titova,et al.  Polarization and temperature dependence of photoluminescence from zincblende and wurtzite InP nanowires , 2007 .

[28]  G. Bester,et al.  Nanowire quantum dots as an ideal source of entangled photon pairs. , 2009, Physical review letters.

[29]  P. Poole,et al.  Interplay between crystal phase purity and radial growth in InP nanowires , 2012, Nanotechnology.

[30]  Takashi Fukui,et al.  Controlled growth of highly uniform, axial/radial direction-defined, individually addressable InP nanowire arrays , 2005 .