Validation of GMI Snowfall Observations by Using a Combination of Weather Radar and Surface Measurements

AbstractCurrently, there are several spaceborne microwave instruments suitable for the detection and quantitative estimation of snowfall. To test and improve retrieval snowfall algorithms, ground validation datasets that combine detailed characterization of snowfall microphysics and spatial precipitation measurements are required. To this endpoint, measurements of snow microphysics are combined with large-scale weather radar observations to generate such a dataset. The quantitative snowfall estimates are computed by applying event-specific relations between the equivalent reflectivity factor and snowfall rate to weather radar observations. The relations are derived using retrieved ice particle microphysical properties from observations that were carried out at the University of Helsinki research station in Hyytiala, Finland, which is about 64 km east of the radar. For each event, the uncertainties of the estimate are also determined. The feasibility of using this type of data to validate spaceborne snowfa...

[1]  William S. Olson,et al.  A physical model to estimate snowfall over land using AMSU‐B observations , 2008 .

[2]  Andrew J. Heymsfield,et al.  Importance of snow to global precipitation , 2015 .

[3]  I. Zawadzki,et al.  Snow Studies. Part II: Average Relationship between Mass of Snowflakes and Their Terminal Fall Velocity , 2010 .

[4]  Guosheng Liu,et al.  Detecting snowfall over land by satellite high‐frequency microwave observations: The lack of scattering signature and a statistical approach , 2013 .

[5]  Christian D. Kummerow,et al.  The Sensitivity of Rainfall Estimation to Error Assumptions in a Bayesian Passive Microwave Retrieval Algorithm , 2015 .

[6]  Simone Tanelli,et al.  CloudSat's Cloud Profiling Radar After Two Years in Orbit: Performance, Calibration, and Processing , 2008, IEEE Transactions on Geoscience and Remote Sensing.

[7]  Steven D. Miller,et al.  Rainfall retrieval over the ocean with spaceborne W‐band radar , 2009 .

[8]  Kazumasa Aonashi,et al.  Development of a snowfall retrieval algorithm at high microwave frequencies , 2006 .

[9]  V. Levizzani,et al.  Status of satellite precipitation retrievals , 2009 .

[10]  Tristan L'Ecuyer,et al.  Intercomparison of snowfall estimates derived from the CloudSat Cloud Profiling Radar and the ground-based weather radar network over Sweden , 2015 .

[11]  P. Rodriguez,et al.  Validation of the CloudSat precipitation occurrence algorithm using the Canadian C band radar network , 2008 .

[12]  Dochul Yang,et al.  WMO Solid Precipitation Measurement Intercomparison Final Report , 1998 .

[13]  Christian D. Kummerow,et al.  The Evolution of the Goddard Profiling Algorithm to a Fully Parametric Scheme , 2015 .

[14]  H. Böhm A General Equation for the Terminal Fall Speed of Solid Hydrometeors. , 1989 .

[15]  Judith A. Curry,et al.  Precipitation characteristics in Greenland‐Iceland‐Norwegian Seas determined by using satellite microwave data , 1997 .

[16]  Ivan Csiszar,et al.  Automated Monitoring of Snow Cover over North America with Multispectral Satellite Data , 2000 .

[17]  D. Moisseev,et al.  Advection-Based Adjustment of Radar Measurements , 2012 .

[18]  T. L’Ecuyer,et al.  Characterization of video disdrometer uncertainties and impacts on estimates of snowfall rate and radar reflectivity , 2013 .

[19]  Fumie A. Furuzawa,et al.  Early Evaluation of Ku- and Ka-Band Sensitivities for the Global Precipitation Measurement (GPM) Dual-Frequency Precipitation Radar (DPR) , 2015 .

[20]  Jian Zhang,et al.  National mosaic and multi-sensor QPE (NMQ) system description, results, and future plans , 2011 .

[21]  Ralf Bennartz,et al.  Utilizing Spaceborne Radars to Retrieve Dry Snowfall , 2009 .

[22]  T. L’Ecuyer,et al.  A Shallow Cumuliform Snowfall Census Using Spaceborne Radar , 2016 .

[23]  Valliappa Lakshmanan,et al.  A Statistical Approach to Mitigating Persistent Clutter in Radar Reflectivity Data , 2012, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[24]  Dagmar Bednárová,et al.  Total Least Squares Approach to Modeling: A Matlab Toolbox , 2010 .

[25]  Nai-Yu Wang,et al.  Quantifying the Snowfall Detection Performance of the GPM Microwave Imager Channels over Land , 2017 .

[26]  Annakaisa von Lerber,et al.  Quantifying the effect of riming on snowfall using ground‐based observations , 2017 .

[27]  Norman C. Grody,et al.  A new snowfall detection algorithm over land using measurements from the Advanced Microwave Sounding Unit (AMSU) , 2003 .

[28]  Min-Jeong Kim,et al.  A physical model to determine snowfall over land by microwave radiometry , 2004, IEEE Transactions on Geoscience and Remote Sensing.

[29]  Yang Hong,et al.  Probabilistic precipitation rate estimates with ground‐based radar networks , 2015 .

[30]  A. Venäläinen,et al.  Estimation of winter road maintenance costs using climate data , 2003 .

[31]  Andrew S. Jones,et al.  Toward snowfall retrieval over land by combining satellite and in situ measurements , 2009 .

[32]  Dmitri Moisseev,et al.  Analysis of weather factors responsible for the traffic ‘Black Day’ in Helsinki, Finland, on 17 March 2005 , 2012 .

[33]  Simone Tanelli,et al.  CloudSat mission: Performance and early science after the first year of operation , 2008 .

[34]  Jeff W. Brogden,et al.  Multi-Radar Multi-Sensor (MRMS) Quantitative Precipitation Estimation: Initial Operating Capabilities , 2016 .

[35]  E. Barthazy,et al.  Fall velocity of snowflakes of different riming degree and crystal types , 2006 .

[36]  David H. Staelin,et al.  Precipitation observations near 54 and 183 GHz using the NOAA-15 satellite , 2000, IEEE Trans. Geosci. Remote. Sens..

[37]  V. Chandrasekar,et al.  Microphysical Properties of Snow and Their Link to Ze–S Relations during BAECC 2014 , 2017 .

[38]  Jarmo Koistinen,et al.  Estimation of Ground-Level Reflectivity Factor in Operational Weather Radar Networks Using VPR-Based Correction Ensembles , 2014 .

[39]  V. Chandrasekar,et al.  BAECC: A Field Campaign to Elucidate the Impact of Biogenic Aerosols on Clouds and Climate , 2016 .

[40]  D. Moisseev,et al.  Use of 2D-video disdrometer to derive mean density–size and Ze–SR relations: Four snow cases from the light precipitation validation experiment , 2015 .

[41]  Harri Hohti,et al.  Quality assurance in the FMI Doppler Weather Radar Network , 2010 .

[42]  Ralph Ferraro,et al.  A snowfall detection algorithm over land utilizing high‐frequency passive microwave measurements—Application to ATMS , 2015 .

[43]  R. Bennartz,et al.  Uncertainty Analysis for CloudSat Snowfall Retrievals , 2011 .

[44]  Filipe Aires,et al.  A Tool to Estimate Land‐Surface Emissivities at Microwave frequencies (TELSEM) for use in numerical weather prediction , 2011 .

[45]  M. Maahn,et al.  How does the spaceborne radar blind zone affect derived surface snowfall statistics in polar regions? , 2014 .

[46]  David Hudak,et al.  Estimating snow microphysical properties using collocated multisensor observations , 2014 .

[47]  Ali Behrangi,et al.  An Update on the Oceanic Precipitation Rate and Its Zonal Distribution in Light of Advanced Observations from Space , 2014 .

[48]  Andrew J. Heymsfield,et al.  Refinements in the Treatment of Ice Particle Terminal Velocities, Highlighting Aggregates , 2005 .

[49]  A. Hou,et al.  The Global Precipitation Measurement Mission , 2014 .

[50]  David L. Mitchell,et al.  Mass-Dimensional Relationships for Ice Particles and the Influence of Riming on Snowfall Rates , 1990 .

[51]  S. Joseph Munchak,et al.  Evaluation of precipitation detection over various surfaces from passive microwave imagers and sounders , 2013 .

[52]  Roy Rasmussen,et al.  Snow Nowcasting Using a Real-Time Correlation of Radar Reflectivity with Snow Gauge Accumulation , 2003 .

[53]  Donna V. Kliche,et al.  The Bias in Moment Estimators for Parameters of Drop Size Distribution Functions: Sampling from Exponential Distributions , 2005 .

[54]  S. Joseph Munchak,et al.  Detection Thresholds of Falling Snow From Satellite-Borne Active and Passive Sensors , 2012, IEEE Transactions on Geoscience and Remote Sensing.

[55]  Annakaisa von Lerber,et al.  Ensemble mean density and its connection to other microphysical properties of falling snow as observed in Southern Finland , 2016 .

[56]  Roy Rasmussen,et al.  A Statistical and Physical Description of Hydrometeor Distributions in Colorado Snowstorms Using a Video Disdrometer , 2007 .

[57]  Ralf Bennartz,et al.  Sensitivity of microwave radiances at 85–183 GHz to precipitating ice particles , 2003 .

[58]  Peter V. Hobbs,et al.  Fall speeds and masses of solid precipitation particles , 1974 .

[59]  Chris Kidd,et al.  Global Precipitation Measurement , 2008 .

[60]  Guosheng Liu,et al.  The relationship between surface rainrate and water paths and its implications to satellite rainrate retrieval , 2012 .

[61]  Tristan L'Ecuyer,et al.  A Comparison of Precipitation Occurrence from the NCEP Stage IV QPE Product and theCloudSatCloud Profiling Radar , 2014 .

[62]  Fuzhong Weng,et al.  NOAA operational hydrological products derived from the advanced microwave sounding unit , 2005, IEEE Transactions on Geoscience and Remote Sensing.

[63]  R. Marchand,et al.  Hydrometeor Detection Using Cloudsat—An Earth-Orbiting 94-GHz Cloud Radar , 2008 .

[64]  Carlton W. Ulbrich,et al.  Rainfall Microphysics and Radar Properties: Analysis Methods for Drop Size Spectra , 1998 .

[65]  S. Pulkkinen,et al.  Probabilistic radar-gauge merging by multivariate spatiotemporal techniques , 2016 .

[66]  Andrew J. Newman,et al.  Presenting the Snowflake Video Imager (SVI) , 2009 .

[67]  V. Chandrasekar,et al.  Global Precipitation Measurement Cold Season Precipitation Experiment (GCPEx): For Measurement Sake Let it Snow , 2015 .

[68]  Guosheng Liu,et al.  Deriving snow cloud characteristics from CloudSat observations , 2008 .

[69]  Ali Behrangi,et al.  On the quantification of oceanic rainfall using spaceborne sensors , 2012 .

[70]  Y. Hong,et al.  Comparison of snowfall estimates from the NASA CloudSat Cloud Profiling Radar and NOAA/NSSL Multi-Radar Multi-Sensor System , 2016 .