Substituent effects on the aromatic edge-to-face interaction.

Substituent effects on the folding equilibrium of molecular torsion balances are rationalised on the basis of changes in the electrostatic interactions, the exchange repulsion, and the dispersive contributions to the interaction free enthalpy.

[1]  S. Grimme Do special noncovalent pi-pi stacking interactions really exist? , 2008, Angewandte Chemie.

[2]  C. Wilcox,et al.  A minimal protein folding model to measure hydrophobic and CH-pi effects on interactions between nonpolar surfaces in water. , 2007, Angewandte Chemie.

[3]  S. Tsuzuki,et al.  Intermolecular interactions of nitrobenzene-benzene complex and nitrobenzene dimer: significant stabilization of slipped-parallel orientation by dispersion interaction. , 2006, The Journal of chemical physics.

[4]  C. Hunter,et al.  Desolvation tips the balance: solvent effects on aromatic interactions. , 2006, Chemical communications.

[5]  Ryan P. Lively,et al.  The Effect of Multiple Substituents on Sandwich and T‐Shaped π–π Interactions , 2006 .

[6]  Eun Cheol Lee,et al.  Substituent effects on the edge-to-face aromatic interactions. , 2005, Journal of the American Chemical Society.

[7]  C. Hunter,et al.  Quantifying intermolecular interactions: guidelines for the molecular recognition toolbox. , 2004, Angewandte Chemie.

[8]  F. Diederich,et al.  A weak attractive interaction between organic fluorine and an amide group. , 2004, Angewandte Chemie.

[9]  C. David Sherrill,et al.  Substituent Effects in π−π Interactions: Sandwich and T-Shaped Configurations , 2004 .

[10]  F. Diederich,et al.  Interactions with aromatic rings in chemical and biological recognition. , 2003, Angewandte Chemie.

[11]  C. Hunter,et al.  Substituent effects on edge-to-face aromatic interactions. , 2002, Chemistry.

[12]  Kwang Soo Kim,et al.  Molecular Clusters of pi-Systems: Theoretical Studies of Structures, Spectra, and Origin of Interaction Energies. , 2000, Chemical reviews.

[13]  K. Houk,et al.  Theoretical studies of the Wilcox molecular torsion balance. Is the edge-to-face aromatic interaction important? , 1999, Organic letters.

[14]  C. Wilcox,et al.  Measurements of Molecular Electrostatic Field Effects in Edge-to-Face Aromatic Interactions and CH-π Interactions with Implications for Protein Folding and Molecular Recognition , 1998 .

[15]  W. Stites,et al.  Protein−Protein Interactions: Interface Structure, Binding Thermodynamics, and Mutational Analysis , 1997 .

[16]  C. Wilcox,et al.  MOLECULAR TORSION BALANCE FOR WEAK MOLECULAR RECOGNITION FORCES. EFFECTS OF TILTED-T EDGE-TO-FACE AROMATIC INTERACTIONS ON CONFORMATIONAL SELECTION AND SOLID-STATE STRUCTURE , 1994 .

[17]  Christopher A. Hunter,et al.  Meldola Lecture. The role of aromatic interactions in molecular recognition , 1994 .

[18]  C. Wilcox,et al.  Chemistry of synthetic receptors and functional group arrays. 19. General effects of binding site water exclusion on hydrogen bond based molecular recognition systems: a closed binding site is less affected by environmental changes than an open site , 1992 .

[19]  Christopher A. Hunter,et al.  The nature of .pi.-.pi. interactions , 1990 .

[20]  Stephen K. Burley,et al.  Electrostatic interactions in aromatic oligopeptides contribute to protein stability , 1989 .

[21]  Patrick W. Fowler,et al.  Theoretical studies of van der Waals molecules and intermolecular forces , 1988 .

[22]  R. Zahradník,et al.  Intermolecular Complexes: The Role of Van Der Waals Systems in Physical Chemistry and in the Biodisciplines , 1988 .

[23]  M. Maeda,et al.  Amino acids and peptides. VII Preparation and application of a water-soluble active ester, p-trimethylammoniophenyl ester. , 1986 .

[24]  D. Mcdaniel,et al.  An Extended Table of Hammett Substitutent Constants Based on the Ionization of Substituted Benzoic Acids , 1958 .

[25]  W. Pauli,et al.  Über den Zusammenhang des Abschlusses der Elektronengruppen im Atom mit der Komplexstruktur der Spektren , 1925 .