Inversion of circular means and the wave equation on convex planar domains

We study the problem of recovering the initial data of the two dimensional wave equation from values of its solution on the boundary @?@W of a smooth convex bounded domain @W@?R^2. As a main result we establish back-projection type inversion formulas that recover any initial data with support in @W modulo an explicitly computed smoothing integral operator K"@W. For circular and elliptical domains the operator K"@W is shown to vanish identically and hence we establish exact inversion formulas of the back-projection type in these cases. Similar results are obtained for recovering a function from its mean values over circles with centers on @?@W. Both reconstruction problems are, amongst others, essential for the hybrid imaging modalities photoacoustic and thermoacoustic tomography.

[1]  Markus Haltmeier,et al.  Inversion of Spherical Means and the Wave Equation in Even Dimensions , 2007, SIAM J. Appl. Math..

[2]  Markus Haltmeier,et al.  Universal Inversion Formulas for Recovering a Function from Spherical Means , 2012, SIAM J. Math. Anal..

[3]  Stephen J. Norton,et al.  Ultrasonic Reflectivity Imaging in Three Dimensions: Exact Inverse Scattering Solutions for Plane, Cylindrical, and Spherical Apertures , 1981, IEEE Transactions on Biomedical Engineering.

[4]  Otmar Scherzer,et al.  THERMOACOUSTIC TOMOGRAPHY AND THE CIRCULAR RADON TRANSFORM: EXACT INVERSION FORMULA , 2007 .

[5]  Ronald N. Bracewell,et al.  The Fourier Transform and Its Applications , 1966 .

[6]  P. Kuchment,et al.  Mathematics of thermoacoustic tomography , 2007, European Journal of Applied Mathematics.

[7]  G. M.,et al.  Partial Differential Equations I , 2023, Applied Mathematical Sciences.

[8]  Markus Haltmeier,et al.  Experimental evaluation of reconstruction algorithms for limited view photoacoustic tomography with line detectors , 2007 .

[9]  H. Weber,et al.  Optoacoustic imaging using a three-dimensional reconstruction algorithm , 2001 .

[10]  Eric Bonnetier,et al.  Small volume asymptotics for anisotropic elastic inclusions , 2012 .

[11]  G. Uhlmann,et al.  Thermoacoustic tomography with variable sound speed , 2009, 0902.1973.

[12]  Vasilis Ntziachristos,et al.  Acceleration of Optoacoustic Model-Based Reconstruction Using Angular Image Discretization , 2012, IEEE Transactions on Medical Imaging.

[13]  Minghua Xu,et al.  Exact frequency-domain reconstruction for thermoacoustic tomography. II. Cylindrical geometry , 2002, IEEE Transactions on Medical Imaging.

[14]  Rakesh,et al.  Determining a Function from Its Mean Values Over a Family of Spheres , 2004, SIAM J. Math. Anal..

[15]  John A. Fawcett,et al.  Inversion of N-dimensional spherical averages , 1985 .

[16]  Otmar Scherzer,et al.  A Reconstruction Algorithm for Photoacoustic Imaging Based on the Nonuniform FFT , 2009, IEEE Transactions on Medical Imaging.

[17]  V. Palamodov A uniform reconstruction formula in integral geometry , 2011, 1111.6514.

[18]  Linh V. Nguyen,et al.  Reconstruction and time reversal in thermoacoustic tomography in acoustically homogeneous and inhomogeneous media , 2008 .

[19]  Lihong V Wang,et al.  Universal back-projection algorithm for photoacoustic computed tomography , 2005, SPIE BiOS.

[20]  M. Haltmeier,et al.  Temporal back-projection algorithms for photoacoustic tomography with integrating line detectors , 2007 .

[21]  S. Jacques,et al.  Iterative reconstruction algorithm for optoacoustic imaging. , 2002, The Journal of the Acoustical Society of America.

[22]  Frank Natterer,et al.  Photo-acoustic inversion in convex domains , 2012 .

[23]  Peter Kuchment,et al.  Mathematics of thermoacoustic and photoacoustic tomography , 2007 .

[24]  MARKUS HALTMEIER,et al.  A Mollification Approach for Inverting the Spherical Mean Radon Transform , 2011, SIAM J. Appl. Math..

[25]  M. Haltmeier,et al.  Exact and approximative imaging methods for photoacoustic tomography using an arbitrary detection surface. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[26]  Leonid Kunyansky,et al.  Reconstruction of a function from its spherical (circular) means with the centers lying on the surface of certain polygons and polyhedra , 2010, 1009.0288.

[27]  L. Kunyansky,et al.  Explicit inversion formulae for the spherical mean Radon transform , 2006, math/0609341.

[28]  Lihong V. Wang,et al.  Photoacoustic imaging in biomedicine , 2006 .

[29]  Jin Zhang,et al.  Weighted expectation maximization reconstruction algorithms for thermoacoustic tomography , 2005, IEEE Transactions on Medical Imaging.

[30]  Markus Haltmeier FREQUENCY DOMAIN RECONSTRUCTION FOR PHOTO- AND THERMOACOUSTIC TOMOGRAPHY WITH LINE DETECTORS , 2006 .

[31]  L. Andersson On the determination of a function from spherical averages , 1988 .