Minimizing Estimation Runtime on Noisy Quantum Computers

The number of measurements demanded by hybrid quantum-classical algorithms such as the variational quantum eigensolver (VQE) is prohibitively high for many problems of practical value. For such problems, realizing quantum advantage will require methods which dramatically reduce this cost. Previous quantum algorithms that reduce the measurement cost (e.g. quantum amplitude and phase estimation) require error rates that are too low for near-term implementation. Here we propose methods that take advantage of the available quantum coherence to maximally enhance the power of sampling on noisy quantum devices, reducing measurement number and runtime compared to the standard sampling method of the variational quantum eigensolver (VQE). Our scheme derives inspiration from quantum metrology, phase estimation, and the more recent "alpha-VQE" proposal, arriving at a general formulation that is robust to error and does not require ancilla qubits. The central object of this method is what we call the "engineered likelihood function" (ELF), used for carrying out Bayesian inference. We show how the ELF formalism enhances the rate of information gain in sampling as the physical hardware transitions from the regime of noisy intermediate-scale quantum computers into that of quantum error corrected ones. This technique speeds up a central component of many quantum algorithms, with applications including chemistry, materials, finance, and beyond. Similar to VQE, we expect small-scale implementations to be realizable on today's quantum devices.

[1]  Earl T. Campbell,et al.  Efficient quantum measurement of Pauli operators in the presence of finite sampling error , 2020, Quantum.

[2]  Nathan Wiebe,et al.  Efficient and noise resilient measurements for quantum chemistry on near-term quantum computers , 2019, npj Quantum Information.

[3]  Alexandru Paler,et al.  Encoding Electronic Spectra in Quantum Circuits with Linear T Complexity , 2018, Physical Review X.

[4]  S. Lloyd,et al.  Quantum metrology. , 2005, Physical review letters.

[5]  J. McClean,et al.  Strategies for quantum computing molecular energies using the unitary coupled cluster ansatz , 2017, Quantum Science and Technology.

[6]  Lin Lin,et al.  Quantum linear system solver based on time-optimal adiabatic quantum computing and quantum approximate optimization algorithm , 2019, ArXiv.

[7]  Vladyslav Verteletskyi,et al.  Measurement optimization in the variational quantum eigensolver using a minimum clique cover. , 2019, The Journal of chemical physics.

[8]  R. Royall On the Probability of Observing Misleading Statistical Evidence , 2000 .

[9]  Ying Li,et al.  Variational algorithms for linear algebra. , 2019, Science bulletin.

[10]  Patrick J. Coles,et al.  Operator Sampling for Shot-frugal Optimization in Variational Algorithms , 2020, 2004.06252.

[11]  G. Brassard,et al.  Quantum Amplitude Amplification and Estimation , 2000, quant-ph/0005055.

[12]  Yuan Feng,et al.  Parameter Estimation of Quantum Channels , 2008, IEEE Transactions on Information Theory.

[13]  Yudong Cao,et al.  A framework for engineering quantum likelihood functions for expectation estimation , 2020 .

[14]  Stuart Hadfield,et al.  The Quantum Approximation Optimization Algorithm for MaxCut: A Fermionic View , 2017, 1706.02998.

[15]  David G. Cory,et al.  Bayesian Inference for Randomized Benchmarking Protocols , 2018, 1802.00401.

[16]  Patrick J. Coles,et al.  An Adaptive Optimizer for Measurement-Frugal Variational Algorithms , 2019 .

[17]  Ying Li,et al.  Efficient Variational Quantum Simulator Incorporating Active Error Minimization , 2016, 1611.09301.

[18]  E. Jaynes Probability theory : the logic of science , 2003 .

[19]  Nathan Wiebe,et al.  Robust online Hamiltonian learning , 2012, TQC.

[20]  Naoki Yamamoto,et al.  Amplitude estimation without phase estimation , 2019, Quantum Information Processing.

[21]  Raymond H. Putra,et al.  Amplitude estimation via maximum likelihood on noisy quantum computer , 2020, Quantum Information Processing.

[22]  M Steffen,et al.  Characterization of addressability by simultaneous randomized benchmarking. , 2012, Physical review letters.

[23]  B. D. Clader,et al.  Preconditioned quantum linear system algorithm. , 2013, Physical review letters.

[24]  Rupak Biswas,et al.  From the Quantum Approximate Optimization Algorithm to a Quantum Alternating Operator Ansatz , 2017, Algorithms.

[25]  Johannes Jakob Meyer,et al.  Stochastic gradient descent for hybrid quantum-classical optimization , 2019, Quantum.

[26]  Maria Schuld,et al.  Quantum Machine Learning in Feature Hilbert Spaces. , 2018, Physical review letters.

[27]  Gilles Brassard,et al.  Quantum Counting , 1998, ICALP.

[28]  Travis S. Humble,et al.  Quantum supremacy using a programmable superconducting processor , 2019, Nature.

[29]  Tzu-Ching Yen,et al.  Unitary partitioning approach to the measurement problem in the Variational Quantum Eigensolver method. , 2019, Journal of chemical theory and computation.

[30]  M. Tribus,et al.  Probability theory: the logic of science , 2003 .

[31]  A. Harrow,et al.  Quantum algorithm for linear systems of equations. , 2008, Physical review letters.

[32]  M. Hastings,et al.  Progress towards practical quantum variational algorithms , 2015, 1507.08969.

[33]  B. Terhal,et al.  Quantum phase estimation of multiple eigenvalues for small-scale (noisy) experiments , 2018, New Journal of Physics.

[34]  Howard M. Wiseman,et al.  Characterization of a qubit Hamiltonian using adaptive measurements in a fixed basis , 2011, 1102.3700.

[35]  E. Knill,et al.  Optimal quantum measurements of expectation values of observables , 2006, quant-ph/0607019.

[36]  Matthew B. Hastings,et al.  Faster phase estimation , 2013, Quantum Inf. Comput..

[37]  Nathan Wiebe,et al.  Efficient Bayesian Phase Estimation. , 2015, Physical review letters.

[38]  I. Chuang,et al.  Optimal Hamiltonian Simulation by Quantum Signal Processing. , 2016, Physical review letters.

[39]  S. Lloyd,et al.  Advances in quantum metrology , 2011, 1102.2318.

[40]  S. Brierley,et al.  Accelerated Variational Quantum Eigensolver. , 2018, Physical review letters.

[41]  J. Gambetta,et al.  Hardware-efficient variational quantum eigensolver for small molecules and quantum magnets , 2017, Nature.

[42]  E. Farhi,et al.  A Quantum Approximate Optimization Algorithm , 2014, 1411.4028.

[43]  Alán Aspuru-Guzik,et al.  Quantum autoencoders for efficient compression of quantum data , 2016, 1612.02806.

[44]  A. Montanaro Quantum speedup of Monte Carlo methods , 2015, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[45]  Patrick J. Coles,et al.  Variational Quantum Linear Solver. , 2020 .

[46]  Ryan Babbush,et al.  The theory of variational hybrid quantum-classical algorithms , 2015, 1509.04279.

[47]  Alán Aspuru-Guzik,et al.  A variational eigenvalue solver on a photonic quantum processor , 2013, Nature Communications.

[48]  Zhang Jiang,et al.  Using models to improve optimizers for variational quantum algorithms , 2020, Quantum Science and Technology.

[49]  S. Lloyd,et al.  Quantum-Enhanced Measurements: Beating the Standard Quantum Limit , 2004, Science.

[50]  Alexei Y. Kitaev,et al.  Quantum measurements and the Abelian Stabilizer Problem , 1995, Electron. Colloquium Comput. Complex..

[51]  Theodore J. Yoder,et al.  Fixed-point quantum search with an optimal number of queries. , 2014, Physical review letters.

[52]  Eric G. Brown,et al.  Quantum Amplitude Estimation in the Presence of Noise , 2020, 2006.14145.

[53]  Nathan Wiebe,et al.  Randomized gap and amplitude estimation , 2016, 1603.03672.

[54]  I. Chuang,et al.  Hamiltonian Simulation by Qubitization , 2016, Quantum.

[55]  Christopher Ferrie,et al.  How to best sample a periodic probability distribution, or on the accuracy of Hamiltonian finding strategies , 2013, Quantum Inf. Process..

[56]  D Zhu,et al.  Training of quantum circuits on a hybrid quantum computer , 2018, Science Advances.

[57]  Joel J. Wallman,et al.  Noise tailoring for scalable quantum computation via randomized compiling , 2015, 1512.01098.

[58]  Isaac L. Chuang,et al.  Methodology of Resonant Equiangular Composite Quantum Gates , 2016, 1603.03996.

[59]  Jhonathan Romero,et al.  Identifying challenges towards practical quantum advantage through resource estimation: the measurement roadblock in the variational quantum eigensolver , 2020 .

[60]  William M. Kirby,et al.  Measurement reduction in variational quantum algorithms , 2019, Physical Review A.

[61]  Naoki Yamamoto,et al.  Modified Grover operator for amplitude estimation , 2020 .