On Maximizing Tree Bandwidth for Topology-Aware Peer-to-Peer Streaming

In recent years, there has been an increasing interest in peer-to-peer (P2P) multimedia streaming. In this paper, we consider constructing a high-bandwidth overlay tree for streaming services. We observe that underlay information such as link connectivity and link bandwidth is important in tree construction, because two seemingly disjoint overlay paths may share common links on the underlay. We hence study how to construct a high-bandwidth overlay tree given the underlay topology. We formulate the problem as building a Maximum Bandwidth Multicast Tree (MBMT) or a Minimum Stress Multicast Tree (MSMT), depending on whether link bandwidth is available or not. We prove that both problems are NP-hard and are not ap-proximable within a factor of (2/3 + epsiv), for any epsiv > 0, unless P = NP. We then present approximation algorithms to address them and analyze the algorithm performance. Furthermore, we discuss some practical issues (e.g., group dynamics, resilience and scalability) in system implementation. We evaluate our algorithms on Internet-like topologies. The results show that our algorithms can achieve high tree bandwidth and low link stress with low penalty in end-to-end delay. Measurement study based on Plan-etLab further confirms this. Our study shows that the knowledge of underlay is important for constructing efficient overlay trees.

[1]  Fangzhe Chang,et al.  Topology inference in the presence of anonymous routers , 2003, IEEE INFOCOM 2003. Twenty-second Annual Joint Conference of the IEEE Computer and Communications Societies (IEEE Cat. No.03CH37428).

[2]  Srinivasan Seshan,et al.  A case for end system multicast , 2002, IEEE J. Sel. Areas Commun..

[3]  Deborah Estrin,et al.  The PIM architecture for wide-area multicast routing , 1996, TNET.

[4]  Paul Francis,et al.  Core based trees (CBT) , 1993, SIGCOMM 1993.

[5]  Qian Zhang,et al.  Lateral error recovery for media streaming in application-level multicast , 2006, IEEE Transactions on Multimedia.

[6]  Richard G. Baraniuk,et al.  pathChirp: Efficient available bandwidth estimation for network paths , 2003 .

[7]  Zongming Fei,et al.  A Proactive Tree Recovery Mechanism for Resilient Overlay Multicast , 2007, IEEE/ACM Transactions on Networking.

[8]  Dorit S. Hochba,et al.  Approximation Algorithms for NP-Hard Problems , 1997, SIGA.

[9]  John Moy,et al.  Multicast Extensions to OSPF , 1994, RFC.

[10]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[11]  Panos M. Pardalos,et al.  A survey of combinatorial optimization problems in multicast routing , 2005, Comput. Oper. Res..

[12]  Mark Crovella,et al.  Efficient algorithms for large-scale topology discovery , 2004, SIGMETRICS '05.

[13]  Marcel Waldvogel,et al.  Efficient topology-aware overlay network , 2003, CCRV.

[14]  Aravind Srinivasan,et al.  Resilient multicast using overlays , 2003, IEEE/ACM Transactions on Networking.

[15]  Zhao Wen-tao,et al.  Efficient available bandwidth estimation for network paths , 2008 .

[16]  JainManish,et al.  End-to-end available bandwidth , 2002 .

[17]  Bo Li,et al.  CoolStreaming/DONet: a data-driven overlay network for peer-to-peer live media streaming , 2005, Proceedings IEEE 24th Annual Joint Conference of the IEEE Computer and Communications Societies..

[18]  Robert Nowak,et al.  Internet tomography , 2002, IEEE Signal Process. Mag..

[19]  Reuven Cohen,et al.  A unicast-based approach for streaming multicast , 2001, Proceedings IEEE INFOCOM 2001. Conference on Computer Communications. Twentieth Annual Joint Conference of the IEEE Computer and Communications Society (Cat. No.01CH37213).

[20]  Albert-László Barabási,et al.  Internet: Diameter of the World-Wide Web , 1999, Nature.

[21]  Donald F. Towsley,et al.  P2Cast: peer-to-peer patching scheme for VoD service , 2003, WWW '03.

[22]  Yajun Wang,et al.  Fast overlay tree based on efficient end-to-end measurements , 2005, IEEE International Conference on Communications, 2005. ICC 2005. 2005.

[23]  Mark Crovella,et al.  Deployment of an Algorithm for Large-Scale Topology Discovery , 2006, IEEE Journal on Selected Areas in Communications.

[24]  Manish Jain,et al.  End-to-end available bandwidth: measurement methodology, dynamics, and relation with TCP throughput , 2003, TNET.

[25]  Kien A. Hua,et al.  P2VoD: providing fault tolerant video-on-demand streaming in peer-to-peer environment , 2004, 2004 IEEE International Conference on Communications (IEEE Cat. No.04CH37577).

[26]  Jon Crowcroft,et al.  Core Based Trees (CBT) An Architecture for Scalable Inter-Domain Multicast Routing , 1993, SIGCOMM 1993.

[27]  Klara Nahrstedt,et al.  Optimal Resource Allocation in Overlay Multicast , 2006, IEEE Transactions on Parallel and Distributed Systems.

[28]  Miguel Castro,et al.  SplitStream: high-bandwidth multicast in cooperative environments , 2003, SOSP '03.

[29]  Y. Tang Yun,et al.  Deploying P2P networks for large-scale live video-streaming service [Peer-to-Peer Multimedia Streaming] , 2007 .

[30]  Stephen E. Deering,et al.  Multicast routing in datagram internetworks and extended LANs , 1990, TOCS.

[31]  Sonia Fahmy,et al.  Topology-aware overlay networks for group communication , 2002, NOSSDAV '02.

[32]  Ratul Mahajan,et al.  Measuring ISP topologies with Rocketfuel , 2004, IEEE/ACM Transactions on Networking.

[33]  Amin Vahdat,et al.  Bullet: high bandwidth data dissemination using an overlay mesh , 2003, SOSP '03.

[34]  Ellen W. Zegura,et al.  How to model an internetwork , 1996, Proceedings of IEEE INFOCOM '96. Conference on Computer Communications.

[35]  Robert D. Nowak,et al.  Maximum likelihood network topology identification from edge-based unicast measurements , 2002, SIGMETRICS '02.

[36]  Lixin Gao,et al.  On inferring and characterizing Internet routing policies , 2003, Journal of Communications and Networks.

[37]  Qian Zhang,et al.  A construction of locality-aware overlay network: mOverlay and its performance , 2004, IEEE Journal on Selected Areas in Communications.

[38]  Yajun Wang,et al.  Network Topology Inference Based on End-to-End Measurements , 2006, IEEE Journal on Selected Areas in Communications.

[39]  Bobby Bhattacharjee,et al.  Scalable application layer multicast , 2002, SIGCOMM '02.

[40]  Ramesh Govindan,et al.  Heuristics for Internet map discovery , 2000, Proceedings IEEE INFOCOM 2000. Conference on Computer Communications. Nineteenth Annual Joint Conference of the IEEE Computer and Communications Societies (Cat. No.00CH37064).

[41]  Stephen E. Deering,et al.  Multicast routing in internetworks and extended LANs , 1988, SIGCOMM '88.

[42]  Peter Steenkiste,et al.  Evaluation and characterization of available bandwidth probing techniques , 2003, IEEE J. Sel. Areas Commun..

[43]  Nick Feamster,et al.  Topology inference from BGP routing dynamics , 2002, IMW '02.

[44]  Shueng-Han Gary Chan,et al.  Island multicast: the combination of IP multicast with application-level multicast , 2004, 2004 IEEE International Conference on Communications (IEEE Cat. No.04CH37577).

[45]  Kirk L. Johnson,et al.  Overcast: reliable multicasting with on overlay network , 2000, OSDI.

[46]  Topology-Aware Overlay Construction in Dynamic Networks , 2003 .

[47]  Qian Zhang,et al.  Deploying P2P networks for large-scale live video-streaming service [Peer-to-Peer Multimedia Streaming] , 2007, IEEE Commun. Mag..