Vibrational modes of water predict spectral niches for photosynthesis in lakes and oceans

[1]  J. Huisman,et al.  Vibrational modes of water predict spectral niches for photosynthesis in lakes and oceans , 2020, Nature Ecology & Evolution.

[2]  L. Vörös,et al.  Photoautotrophic picoplankton – a review on their occurrence, role and diversity in Lake Balaton , 2020, Biologia Futura.

[3]  J. M. Schuurmans,et al.  Changes in water color shift competition between phytoplankton species with contrasting light‐harvesting strategies , 2019, Ecology.

[4]  Xiao Tan,et al.  Effects of light color on interspecific competition between Microcystis aeruginosa and Chlorella pyrenoidosa in batch experiment , 2019, Environmental Science and Pollution Research.

[5]  Richard W. Gould,et al.  An Ocean-Colour Time Series for Use in Climate Studies: The Experience of the Ocean-Colour Climate Change Initiative (OC-CCI) , 2019, Sensors.

[6]  F. Partensky,et al.  Chromatic Acclimation in Cyanobacteria: A Diverse and Widespread Process for Optimizing Photosynthesis. , 2019, Annual review of microbiology.

[7]  M. Pereira,et al.  Effects of brownification and warming on algal blooms, metabolism and higher trophic levels in productive shallow lake mesocosms. , 2019, The Science of the total environment.

[8]  M. Follows,et al.  Dimensions of marine phytoplankton diversity , 2019, Biogeosciences.

[9]  M. Ikeuchi,et al.  Diverse Chromatic Acclimation Processes Regulating Phycoerythrocyanin and Rod-Shaped Phycobilisome in Cyanobacteria. , 2019, Molecular plant.

[10]  S. Pokhrel,et al.  Interplay between differentially expressed enzymes contributes to light color acclimation in marine Synechococcus , 2019, Proceedings of the National Academy of Sciences.

[11]  Stephanie Dutkiewicz,et al.  Ocean colour signature of climate change , 2019, Nature Communications.

[12]  A. Pollard,et al.  Fewer blue lakes and more murky lakes across the continental U.S.: Implications for planktonic food webs , 2018, Limnology and oceanography.

[13]  J. M. Schuurmans,et al.  Blue light reduces photosynthetic efficiency of cyanobacteria through an imbalance between photosystems I and II , 2018, Photosynthesis Research.

[14]  H. Paerl,et al.  Cyanobacterial blooms , 2018, Nature Reviews Microbiology.

[15]  Robert J. W. Brewin,et al.  Scratching Beneath the Surface: A Model to Predict the Vertical Distribution of Prochlorococcus Using Remote Sensing , 2018, Remote. Sens..

[16]  J. Huisman,et al.  Competition for nutrients and light: testing advances in resource competition with a natural phytoplankton community. , 2018, Ecology.

[17]  L. Hansson,et al.  Primary producers or consumers? Increasing phytoplankton bacterivory along a gradient of lake warming and browning , 2018 .

[18]  Gregory K. Farrant,et al.  Light color acclimation is a key process in the global ocean distribution of Synechococcus cyanobacteria , 2018, Proceedings of the National Academy of Sciences.

[19]  F. Mélin,et al.  Ocean-colour products for climate-change studies: What are their ideal characteristics? , 2017 .

[20]  L. Hansson,et al.  Phytoplankton diversity loss along a gradient of future warming and brownification in freshwater mesocosms , 2017 .

[21]  E. Kritzberg Centennial‐long trends of lake browning show major effect of afforestation , 2017 .

[22]  A. Deininger,et al.  Phytoplankton response to whole lake inorganic N fertilization along a gradient in dissolved organic carbon. , 2017, Ecology.

[23]  E. Fry,et al.  Ultraviolet (250-550  nm) absorption spectrum of pure water. , 2016, Applied optics.

[24]  Francisco M. Cornejo-Castillo,et al.  Delineating ecologically significant taxonomic units from global patterns of marine picocyanobacteria , 2016, Proceedings of the National Academy of Sciences.

[25]  Gregory K. Farrant,et al.  A Gene Island with Two Possible Configurations Is Involved in Chromatic Acclimation in Marine Synechococcus , 2013, PloS one.

[26]  L. Hansson,et al.  Synergistic and species-specific effects of climate change and water colour on cyanobacterial toxicity and bloom formation , 2013 .

[27]  M. Ikeuchi,et al.  Phycobilisome: architecture of a light-harvesting supercomplex , 2013, Photosynthesis Research.

[28]  Marcel R. Wernand,et al.  Trends in Ocean Colour and Chlorophyll Concentration from 1889 to 2000, Worldwide , 2013, PloS one.

[29]  S. Chisholm,et al.  Temporal dynamics of Prochlorococcus ecotypes in the Atlantic and Pacific oceans , 2010, The ISME Journal.

[30]  B. Nechad,et al.  Calibration and validation of a generic multisensor algorithm for mapping of total suspended matter in turbid waters , 2010 .

[31]  David Doxaran,et al.  Spectral variations of light scattering by marine particles in coastal waters, from the visible to the near infrared , 2009 .

[32]  Michael J. Behrenfeld,et al.  Significant contribution of large particles to optical backscattering in the open ocean , 2009 .

[33]  Meike T. Wortel,et al.  The Timescale of Phenotypic Plasticity and Its Impact on Competition in Fluctuating Environments , 2008, The American Naturalist.

[34]  Martin Ostrowski,et al.  Diversity and evolution of phycobilisomes in marine Synechococcus spp.: a comparative genomics study , 2007, Genome Biology.

[35]  J. Stoddard,et al.  Dissolved organic carbon trends resulting from changes in atmospheric deposition chemistry , 2007, Nature.

[36]  J. Huisman,et al.  Diversity and phylogeny of Baltic Sea picocyanobacteria inferred from their ITS and phycobiliprotein operons. , 2007, Environmental microbiology.

[37]  Lucas J Stal,et al.  Colorful niches of phototrophic microorganisms shaped by vibrations of the water molecule , 2007, The ISME Journal.

[38]  Lucas J Stal,et al.  Colourful coexistence of red and green picocyanobacteria in lakes and seas. , 2007, Ecology letters.

[39]  J. Huisman,et al.  Competition for Light between Toxic and Nontoxic Strains of the Harmful Cyanobacterium Microcystis , 2007, Applied and Environmental Microbiology.

[40]  H. Claustre,et al.  Optical properties of the “clearest” natural waters , 2007 .

[41]  Sallie W. Chisholm,et al.  Niche Partitioning Among Prochlorococcus Ecotypes Along Ocean-Scale Environmental Gradients , 2006, Science.

[42]  J. Huisman,et al.  Adaptive divergence in pigment composition promotes phytoplankton biodiversity , 2004, Nature.

[43]  Annick Bricaud,et al.  Natural variability of phytoplanktonic absorption in oceanic waters: Influence of the size structure of algal populations , 2004 .

[44]  E. Boss,et al.  Modeling the spectral shape of absorption by chromophoric dissolved organic matter , 2004 .

[45]  F. Chen,et al.  Phylogenetic diversity of Synechococcus in the Chesapeake Bay revealed by ribulose-1,5-bisphosphate carboxylase-oxygenase (RubisCO) large subunit gene (rbcL) sequences , 2004 .

[46]  Dariusz Stramski,et al.  Variations in the light absorption coefficients of phytoplankton, nonalgal particles, and dissolved organic matter in coastal waters around Europe , 2003 .

[47]  Dariusz Stramski,et al.  Light scattering properties of marine particles in coastal and open ocean waters as related to the particle mass concentration , 2003 .

[48]  S. Chisholm,et al.  Cyanobacterial photosynthesis in the oceans: the origins and significance of divergent light-harvesting strategies. , 2002, Trends in microbiology.

[49]  D. Vaulot,et al.  Prochlorococcus, a Marine Photosynthetic Prokaryote of Global Significance , 1999, Microbiology and Molecular Biology Reviews.

[50]  Lajos Vörös,et al.  Freshwater picocyanobacteria along a trophic gradient and light quality range , 1998, Hydrobiologia.

[51]  E. Fry,et al.  Absorption spectrum (380-700 nm) of pure water. II. Integrating cavity measurements. , 1997, Applied optics.

[52]  E. Fry,et al.  Absorption spectrum (340-640 nm) of pure water. I. Photothermal measurements. , 1997, Applied optics.

[53]  J R Zaneveld,et al.  Absorption and attenuation of visible and near-infrared light in water: dependence on temperature and salinity. , 1997, Applied optics.

[54]  Sallie W. Chisholm,et al.  Comparative physiology of Synechococcus and Prochlorococcus: influence of light and temperature on growth, pigments, fluorescence and absorptive properties , 1995 .

[55]  C. Mobley Light and Water: Radiative Transfer in Natural Waters , 1994 .

[56]  R. Olson,et al.  Prochlorococcus marinus nov. gen. nov. sp.: an oxyphototrophic marine prokaryote containing divinyl chlorophyll a and b , 1992, Archives of Microbiology.

[57]  F. Pick The abundance and composition of freshwater picocyanobacteria in relation to light penetration , 1991 .

[58]  B Gentili,et al.  Diffuse reflectance of oceanic waters: its dependence on Sun angle as influenced by the molecular scattering contribution. , 1991, Applied optics.

[59]  B. Osborne,et al.  Light and Photosynthesis in Aquatic Ecosystems. , 1985 .

[60]  T. J. Petzold Volume Scattering Functions for Selected Ocean Waters , 1972 .

[61]  L. Draeger I. Early Observations , 1966 .

[62]  T. Engelmann Ueber Sauerstoffausscheidung von Pflanzenzellen im Mikrospektrum , 1882, Archiv für die gesamte Physiologie des Menschen und der Tiere.

[63]  L. Tranvik,et al.  Sensitivity of freshwaters to browning in response to future climate change , 2015, Climatic Change.

[64]  N. Tandeau de Marsac Phycobiliproteins and phycobilisomes: the early observations , 2003, Photosynthesis research.

[65]  B. Palenik Chromatic Adaptation in Marine Synechococcus Strains , 2001 .

[66]  L. Prieur,et al.  Absorption by dissolved organic matter of the sea (yellow substance) in the UV and visible domains1 , 1981 .