MAW: the reproducible Metabolome Annotation Workflow for untargeted tandem mass spectrometry

[1]  S. Kim,et al.  Comparative Analysis of Binary Similarity Measures for Compound Identification in Mass Spectrometry-Based Metabolomics , 2022, Metabolites.

[2]  J. V. D. van der Hooft,et al.  MS2Query: reliable and scalable MS2 mass spectra-based analogue search , 2022, bioRxiv.

[3]  G. Pohnert,et al.  Metabolic adaptation of diatoms to hypersalinity. , 2022, Phytochemistry.

[4]  Caroline H. Johnson,et al.  TidyMass an object-oriented reproducible analysis framework for LC–MS data , 2022, Nature Communications.

[5]  T. Ebbels,et al.  Automated Annotation of Untargeted All-Ion Fragmentation LC–MS Metabolomics Data with MetaboAnnotatoR , 2022, Analytical chemistry.

[6]  Michael A. Stravs,et al.  A Modular and Expandable Ecosystem for Metabolomics Data Annotation in R , 2022, Metabolites.

[7]  Michael A. Stravs,et al.  MSNovelist: de novo structure generation from mass spectra , 2021, Nature Methods.

[8]  Alexandru Iosup,et al.  Methods included , 2021, Commun. ACM.

[9]  A. Wilm,et al.  Reproducible, scalable, and shareable analysis pipelines with bioinformatics workflow managers , 2021, Nature Methods.

[10]  D. Wishart,et al.  CFM-ID 4.0: More Accurate ESI-MS/MS Spectral Prediction and Compound Identification. , 2021, Analytical chemistry.

[11]  S. Schuster,et al.  Mass spectrometry-based metabolomics: a guide for annotation, quantification and best reporting practices , 2021, Nature Methods.

[12]  Kristian Peters,et al.  Untargeted In Silico Compound Classification—A Novel Metabolomics Method to Assess the Chemodiversity in Bryophytes , 2021, International journal of molecular sciences.

[13]  S. Rogers,et al.  Spec2Vec: Improved mass spectral similarity scoring through learning of structural relationships. , 2021, PLoS computational biology.

[14]  R. Bauer,et al.  Natural products in drug discovery: advances and opportunities , 2021, Nature Reviews Drug Discovery.

[15]  Benjamin A. Shoemaker,et al.  PubChem in 2021: new data content and improved web interfaces , 2020, Nucleic Acids Res..

[16]  Mehmet Aziz Yirik,et al.  COCONUT online: Collection of Open Natural Products database , 2020, Journal of Cheminformatics.

[17]  A. Gurevich,et al.  MolDiscovery: learning mass spectrometry fragmentation of small molecules , 2020, Nature Communications.

[18]  N. Thu,et al.  Five phenolic compounds from Marchantia polymorpha L. and their in vitro antibacterial, antioxidant and cytotoxic activities , 2020 .

[19]  Juho Rousu,et al.  Systematic classification of unknown metabolites using high-resolution fragmentation mass spectra , 2020, Nature Biotechnology.

[20]  Florian Huber,et al.  Spec2Vec: Improved mass spectral similarity scoring through learning of structural relationships , 2020, bioRxiv.

[21]  Florian Huber,et al.  matchms - processing and similarity evaluation of mass spectrometry data , 2020, bioRxiv.

[22]  Martin Giera,et al.  Scientific workflow managers in metabolomics: an overview. , 2020, The Analyst.

[23]  John A. Bowden,et al.  Lipid Annotator: Towards Accurate Annotation in Non-Targeted Liquid Chromatography High-Resolution Tandem Mass Spectrometry (LC-HRMS/MS) Lipidomics Using a Rapid and User-Friendly Software , 2020, Metabolites.

[24]  N. Lopes,et al.  Mass spectrometry-based metabolomics approach in the isolation of bioactive natural products , 2020, Scientific Reports.

[25]  Yolanda Gil,et al.  FAIR Computational Workflows , 2020, Data Intelligence.

[26]  Kristian Peters,et al.  A practical guide to implementing metabolomics in plant ecology and biodiversity research , 2020 .

[27]  Tobias Depke,et al.  CluMSID: an R package for similarity-based clustering of tandem mass spectra to aid feature annotation in metabolomics , 2019, Bioinform..

[28]  Farhana R Pinu,et al.  Translational Metabolomics: Current Challenges and Future Opportunities , 2019, Metabolites.

[29]  Roger Guimerà,et al.  CliqueMS: a computational tool for annotating in-source metabolite ions from LC-MS untargeted metabolomics data based on a coelution similarity network , 2019, Bioinform..

[30]  S. Böcker,et al.  SIRIUS 4: a rapid tool for turning tandem mass spectra into metabolite structure information , 2019, Nature Methods.

[31]  P. Pevzner,et al.  Dereplication of microbial metabolites through database search of mass spectra , 2018, Nature Communications.

[32]  Alejandra N. González-Beltrán,et al.  PhenoMeNal: processing and analysis of metabolomics data in the cloud , 2018, bioRxiv.

[33]  Patrick D Schloss,et al.  Identifying and Overcoming Threats to Reproducibility, Replicability, Robustness, and Generalizability in Microbiome Research , 2018, mBio.

[34]  Marius van den Beek,et al.  The Galaxy platform for accessible, reproducible and collaborative biomedical analyses: 2018 update , 2018, Nucleic Acids Res..

[35]  Christoph Steinbeck,et al.  Current Challenges in Plant Eco-Metabolomics , 2018, International journal of molecular sciences.

[36]  Melanie Herschel,et al.  A survey on provenance: What for? What form? What from? , 2017, The VLDB Journal.

[37]  Alban Gaignard,et al.  Scientific workflows for computational reproducibility in the life sciences: Status, challenges and opportunities , 2017, Future Gener. Comput. Syst..

[38]  Egon L. Willighagen,et al.  The Chemistry Development Kit (CDK) v2.0: atom typing, depiction, molecular formulas, and substructure searching , 2017, Journal of Cheminformatics.

[39]  Evan Bolton,et al.  ClassyFire: automated chemical classification with a comprehensive, computable taxonomy , 2016, Journal of Cheminformatics.

[40]  Stacy D. Sherrod,et al.  Untargeted Metabolomics Strategies—Challenges and Emerging Directions , 2016, Journal of The American Society for Mass Spectrometry.

[41]  Kristian Fog Nielsen,et al.  Sharing and community curation of mass spectrometry data with Global Natural Products Social Molecular Networking , 2016, Nature Biotechnology.

[42]  Erik Schultes,et al.  The FAIR Guiding Principles for scientific data management and stewardship , 2016, Scientific Data.

[43]  Emma L. Schymanski,et al.  MetFrag relaunched: incorporating strategies beyond in silico fragmentation , 2016, Journal of Cheminformatics.

[44]  Pieter C Dorrestein,et al.  Illuminating the dark matter in metabolomics , 2015, Proceedings of the National Academy of Sciences.

[45]  Masanori Arita,et al.  MS-DIAL: Data Independent MS/MS Deconvolution for Comprehensive Metabolome Analysis , 2015, Nature Methods.

[46]  Daniel Jacob,et al.  Workflow4Metabolomics: a collaborative research infrastructure for computational metabolomics , 2014, Bioinform..

[47]  Emma L. Schymanski,et al.  Metabolite identification: are you sure? And how do your peers gauge your confidence? , 2014, Metabolomics.

[48]  Emma L. Schymanski,et al.  Identifying small molecules via high resolution mass spectrometry: communicating confidence. , 2014, Environmental science & technology.

[49]  Y. Asakawa,et al.  Phytochemical and biological studies of bryophytes. , 2013, Phytochemistry.

[50]  Martin Strohalm,et al.  mMass as a Software Tool for the Annotation of Cyclic Peptide Tandem Mass Spectra , 2012, PloS one.

[51]  Natalie I. Tasman,et al.  A Cross-platform Toolkit for Mass Spectrometry and Proteomics , 2012, Nature Biotechnology.

[52]  Peter J. Bickel,et al.  Measuring reproducibility of high-throughput experiments , 2011, 1110.4705.

[53]  Laxman Yetukuri,et al.  Algorithms and tools for the preprocessing of LC–MS metabolomics data , 2011 .

[54]  Lennart Martens,et al.  mzML—a Community Standard for Mass Spectrometry Data* , 2010, Molecular & Cellular Proteomics.

[55]  Matej Oresic,et al.  MZmine 2: Modular framework for processing, visualizing, and analyzing mass spectrometry-based molecular profile data , 2010, BMC Bioinformatics.

[56]  Sean Bechhofer,et al.  Research Objects: Towards Exchange and Reuse of Digital Knowledge , 2010 .

[57]  M. Hirai,et al.  MassBank: a public repository for sharing mass spectral data for life sciences. , 2010, Journal of mass spectrometry : JMS.

[58]  Thorsten Meinl,et al.  KNIME - the Konstanz information miner: version 2.0 and beyond , 2009, SKDD.

[59]  Nigel W. Hardy,et al.  Proposed minimum reporting standards for chemical analysis , 2007, Metabolomics.

[60]  Ying Zhang,et al.  HMDB: the Human Metabolome Database , 2007, Nucleic Acids Res..

[61]  P. Shannon,et al.  Cytoscape: a software environment for integrated models of biomolecular interaction networks. , 2003, Genome research.

[62]  Egon L. Willighagen,et al.  The Chemistry Development Kit (CDK): An Open-Source Java Library for Chemo-and Bioinformatics , 2003, J. Chem. Inf. Comput. Sci..

[63]  W. Niessen MS–MS and MS n , 1999 .

[64]  Terry D. Lee,et al.  Data-controlled automation of liquid chromatography/tandem mass spectrometry analysis of peptide mixtures , 1996, Journal of the American Society for Mass Spectrometry.