Removal of salts and dyes by low ZnAl2O4–TiO2 ultrafiltration membrane deposited on support made from raw clay

Abstract This paper reports the dynamic characterizations of a ZnAl 2 O 4 –TiO 2 membrane deposited on a macroporous support prepared from Moroccan clay coated with a zirconia microfiltration interlayer. The water permeability of the membrane is 0.26 × 10 −10  m s −1  Pa −1 , its thickness is less than 700 nm with an average pore diameter of 5 nm, and a cut off about 4500 Da. The investigations of filtrations performed with different salts (NaCl, CaCl 2 , Na 2 SO 4 , CaSO 4 ) prove the rejection mechanism is governed by a Donnan exclusion of the coion. Results obtained with solutions charged in heavy metal ions such as Cr III and synthetic dyes are very promising to consider the use of this membrane in depolluting filtration processes.

[1]  A. Szymczyk,et al.  Comparison of two electrokinetic methods – electroosmosis and streaming potential – to determine the zeta-potential of plane ceramic membranes , 1998 .

[2]  I. Koyuncu Reactive dye removal in dye/salt mixtures by nanofiltration membranes containing vinylsulphone dyes: effects of feed concentration and cross flow velocity , 2002 .

[3]  A. Pihlajamäki,et al.  Characterization of ultrafiltration membranes by simultaneous streaming potential and flux measurements , 1994 .

[4]  C. Vandecasteele,et al.  Salt retention in nanofiltration with multilayer ceramic TiO2 membranes , 2002 .

[5]  Rüdiger Knauf,et al.  Process water production from river water by ultrafiltration and reverse osmosis , 2000 .

[6]  M. Persin,et al.  Filtration of electrolyte solutions with new TiO2–ZnAl2O4 ultrafiltration membranes in relation with the electric surface properties , 2001 .

[7]  J. Fabre,et al.  New Inorganic Ultrafiltration Membranes: Titania and Zirconia Membranes , 1989 .

[8]  Marcel Mulder,et al.  Basic Principles of Membrane Technology , 1991 .

[9]  Abulbasher M. Shahalam,et al.  Feed water pretreatment in RO systems: unit processes in the middle east , 2002 .

[10]  L. Cot,et al.  Fundamentals of inorganic membrane science and technology , 1996 .

[11]  A. Larbot,et al.  Processing and characterization of TiO2/ZnAl2O4 ultrafiltration membranes deposited on tubular support prepared from Moroccan clay , 2005 .

[12]  A. Mohammad,et al.  Analysis of the Salt Retention of Nanofiltration Membranes Using the Donnan–Steric Partitioning Pore Model , 1999 .

[13]  Shoji Kimura,et al.  Calculation of ion rejection by extended nernst-planck equation with charged reverse osmosis membranes for single and mixed electrolyte solutions , 1991 .

[14]  S. Nakao,et al.  Effective Charge Density and Pore Structure of Charged Ultrafiltration Membranes , 1990 .

[15]  Jean-Christophe Remigy,et al.  Treatment of textile dye effluent using a polyamide-based nanofiltration membrane , 2002 .

[16]  A. Larbot,et al.  Potassium titanyl phosphate membranes: surface properties and application to ionic solution filtration , 1998 .

[17]  A. Larbot,et al.  Elaboration and properties of TiO2–ZnAl2O4 ultrafiltration membranes , 2001 .

[18]  K. S. Spiegler,et al.  Thermodynamics of hyperfiltration (reverse osmosis): criteria for efficient membranes , 1966 .

[19]  J. M. Dickson,et al.  Permeation of mixed-salt solutions with commercial and pore-filled nanofiltration membranes: membrane charge inversion phenomena , 2004 .

[20]  A. Larbot,et al.  Preparation of hafnia ceramic membranes for ultrafiltration , 1997 .