Current induced switching in Mn2Au from first principles

It is well established that it is possible to switch certain antiferromagnets electrically, yet the in-terplay of N´eel-spin-orbit torques (NSOT) and thermal activation is only poorly understood. Combining ab initio calculations and atomistic spin dynamics simulations we develop a multiscale model to study the current induced switching in Mn 2 Au. We compute from first principles the strength and direction of the electrically induced magnetic moments, caused by the Rashba–Edelstein effect, and take these into account in atomistic spin dynamics simulations. Our simulations reveal the switching paths as well as the time scales for switching. The size of the induced moments, however, turns out to be insufficient to lead to fully deterministic switching. Instead, we find that a certain degree of thermal activation is required to help overcoming the relevant energy barrier.

[1]  U. Nowak,et al.  Ultrafast coherent all-optical switching of an antiferromagnet with the inverse Faraday effect , 2021, Physical Review B.

[2]  P. Oppeneer,et al.  Quantitative comparison of electrically induced spin and orbital polarizations in heavy-metal/ 3d -metal bilayers , 2020, Physical Review Materials.

[3]  U. Nowak,et al.  Reduced thermal stability of antiferromagnetic nanostructures , 2019, Physical Review B.

[4]  A. Nandy,et al.  Orbitally dominated Rashba-Edelstein effect in noncentrosymmetric antiferromagnets , 2019, Nature Communications.

[5]  M. Klaui,et al.  Imaging of current induced Néel vector switching in antiferromagnetic Mn2Au , 2019, Physical Review B.

[6]  K. Schwarz,et al.  WIEN2k: An Augmented Plane Wave Plus Local Orbitals Program for Calculating Crystal Properties , 2019 .

[7]  H. Ohno,et al.  Spin transport and spin torque in antiferromagnetic devices , 2018 .

[8]  M. Jourdan,et al.  Experimental determination of exchange constants in antiferromagnetic Mn 2 Au , 2018, 1803.03524.

[9]  M. Klaui,et al.  Direct imaging of antiferromagnetic domains in Mn 2 Au manipulated by high magnetic fields , 2018, 1803.03022.

[10]  Tobias Kampfrath,et al.  Terahertz electrical writing speed in an antiferromagnetic memory , 2018, Science Advances.

[11]  Tristan Matalla-Wagner,et al.  Electrical Switching of Antiferromagnetic Mn2Au and the Role of Thermal Activation , 2017, Physical Review Applied.

[12]  I. Turek,et al.  Writing and reading antiferromagnetic Mn2Au by Néel spin-orbit torques and large anisotropic magnetoresistance , 2017, Nature Communications.

[13]  T. Jungwirth,et al.  Antiferromagnetic CuMnAs multi-level memory cell with microelectronic compatibility , 2017, Nature Communications.

[14]  F. Freimuth,et al.  Spin-orbit torques in locally and globally noncentrosymmetric crystals: Antiferromagnets and ferromagnets , 2016, 1604.07590.

[15]  C. Colin,et al.  Easy moment direction and antiferromagnetic domain wall motion in Mn2Au , 2016 .

[16]  J. Wunderlich,et al.  Robust picosecond writing of a layered antiferromagnet by staggered spin-orbit fields , 2016, 1604.05918.

[17]  J. Wunderlich,et al.  Antiferromagnetic spintronics. , 2015, Nature nanotechnology.

[18]  A. Rushforth,et al.  Electrical switching of an antiferromagnet , 2015, Science.

[19]  J. Sinova,et al.  Relativistic Néel-order fields induced by electrical current in antiferromagnets. , 2014, Physical review letters.

[20]  C. Colin,et al.  Revealing the properties of Mn 2 Au for antiferromagnetic spintronics , 2013 .

[21]  U. Nowak,et al.  Atomistic spin model based on a spin-cluster expansion technique: Application to the IrMn3/Co interface , 2010, 1010.2375.

[22]  J. Wunderlich,et al.  Spin-orbit coupling induced anisotropy effects in bimetallic antiferromagnets: A route towards antiferromagnetic spintronics , 2010, 1002.2151.

[23]  P. Weinberger Magnetic Anisotropies in Nanostructured Matter , 2008 .

[24]  S. Khmelevskyi,et al.  Layered antiferromagnetism with high Neel temperature in the intermetallic compound Mn2Au , 2008 .

[25]  U. Nowak Classical Spin Models , 2007 .

[26]  B. L. Gyorffy,et al.  Temperature dependence of magnetic anisotropy: An ab initio approach , 2006 .

[27]  Peter Weinberger,et al.  Electron Scattering in Solid Matter: A Theoretical and Computational Treatise , 2004 .

[28]  R. Drautz,et al.  Spin-cluster expansion: Parametrization of the general adiabatic magnetic energy hypersurface with ab-initio accuracy , 2004 .

[29]  P. Weinberger,et al.  First-principles relativistic study of spin waves in thin magnetic films , 2003 .

[30]  Julie B. Staunton,et al.  A first-principles theory of ferromagnetic phase transitions in metals , 1985 .

[31]  J. Smith,et al.  The structure of Mn2Au and Mn3Au , 1970 .