Evidence from Nuclear DNA Sequences Sheds Light on the Phylogenetic Relationships of Pinnipedia: Single Origin with Affinity to Musteloidea
暂无分享,去创建一个
Mari Kobayashi | J. Sato | M. Wolsan | Hitoshi Suzuki | S. Minami | T. Hosoda | Kozue Hiyama | Y. Yamaguchi
[1] M. Goodman. Macromolecular Sequences in Systematic and Evolutionary Biology , 2012, Monographs in Evolutionary Biology.
[2] Ú. Árnason. Localization of nucleolar organizing regions in pinniped karyotypes. , 2009, Hereditas.
[3] Ú. Árnason. The relationship between the four principal pinniped karyotypes. , 2009, Hereditas.
[4] Ú. Árnason. Comparative chromosome studies in Pinnipedia. , 2009, Hereditas.
[5] C. Strobeck,et al. A phylogeny of the Caniformia (order Carnivora) based on 12 complete protein-coding mitochondrial genes. , 2005, Molecular phylogenetics and evolution.
[6] Ziheng Yang,et al. Branch-length prior influences Bayesian posterior probability of phylogeny. , 2005, Systematic biology.
[7] J. J. Flynn,et al. Molecular phylogeny of the carnivora (mammalia): assessing the impact of increased sampling on resolving enigmatic relationships. , 2005, Systematic biology.
[8] B. Rannala,et al. Frequentist properties of Bayesian posterior probabilities of phylogenetic trees under simple and complex substitution models. , 2004, Systematic biology.
[9] O. Ryder,et al. Phylogenetic relationships within mammalian order Carnivora indicated by sequences of two nuclear DNA genes. , 2004, Molecular phylogenetics and evolution.
[10] I. Stirling,et al. A phylogeny of the extant Phocidae inferred from complete mitochondrial DNA coding regions. , 2004, Molecular phylogenetics and evolution.
[11] A. Hipp,et al. Congruence versus phylogenetic accuracy: revisiting the incongruence length difference test. , 2004, Systematic biology.
[12] J. Sato,et al. Molecular Phylogeny of Arctoids (Mammalia: Carnivora) with Emphasis on Phylogenetic and Taxonomic Positions of the Ferret-badgers and Skunks , 2004, Zoological science.
[13] O. Bininda-Emonds,et al. Novel versus unsupported clades: assessing the qualitative support for clades in MRP supertrees. , 2003, Systematic biology.
[14] A. Berta,et al. Chapter 3 , 2003 .
[15] T. Britton,et al. Reliability of Bayesian posterior probabilities and bootstrap frequencies in phylogenetics. , 2003, Systematic biology.
[16] R. Wayne,et al. Type I STS markers are more informative than cytochrome B in phylogenetic reconstruction of the Mustelidae (Mammalia: Carnivora). , 2003, Systematic biology.
[17] John P. Huelsenbeck,et al. MrBayes 3: Bayesian phylogenetic inference under mixed models , 2003, Bioinform..
[18] Antonis Rokas,et al. Comparing bootstrap and posterior probability values in the four-taxon case. , 2003, Systematic biology.
[19] Klaus-Peter Koepfli,et al. A new phylogenetic marker, apolipoprotein B, provides compelling evidence for eutherian relationships. , 2003, Molecular phylogenetics and evolution.
[20] S. Holmes,et al. Bootstrapping Phylogenetic Trees: Theory and Methods , 2003 .
[21] M. S. Lee,et al. Partitioned likelihood support and the evaluation of data set conflict. , 2003, Systematic biology.
[22] W. Doolittle,et al. Comparison of Bayesian and maximum likelihood bootstrap measures of phylogenetic reliability. , 2003, Molecular biology and evolution.
[23] J. Sato,et al. Phylogenetic Relationships and Divergence Times among Mustelids (Mammalia: Carnivora) Based on Nucleotide Sequences of the Nuclear Interphotoreceptor Retinoid Binding Protein and Mitochondrial Cytochrome b Genes , 2003, Zoological science.
[24] F. Lutzoni,et al. Bayes or bootstrap? A simulation study comparing the performance of Bayesian Markov chain Monte Carlo sampling and bootstrapping in assessing phylogenetic confidence. , 2003, Molecular biology and evolution.
[25] Masatoshi Nei,et al. Overcredibility of molecular phylogenies obtained by Bayesian phylogenetics , 2002, Proceedings of the National Academy of Sciences of the United States of America.
[26] Derrick J. Zwickl,et al. Phylogenetic relationships of the dwarf boas and a comparison of Bayesian and bootstrap measures of phylogenetic support. , 2002, Molecular phylogenetics and evolution.
[27] A. Janke,et al. Mitogenomic analyses of eutherian relationships , 2002, Cytogenetic and Genome Research.
[28] D. Yeates,et al. Partitioned Bremer support and multiple trees , 2002, Cladistics : the international journal of the Willi Hennig Society.
[29] J. Huelsenbeck,et al. Parallel Metropolis coupled Markov chain Monte Carlo for Bayesian phylogenetic inference , 2002, Bioinform..
[30] F. K. Barker,et al. The utility of the incongruence length difference test. , 2002, Systematic biology.
[31] A. Janke,et al. Mammalian mitogenomic relationships and the root of the eutherian tree , 2002, Proceedings of the National Academy of Sciences of the United States of America.
[32] G. Lecointre,et al. When does the incongruence length difference test fail? , 2002, Molecular biology and evolution.
[33] C. Strobeck,et al. Conserved primers for rapid sequencing of the complete mitochondrial genome from carnivores, applied to three species of bears. , 2002, Molecular biology and evolution.
[34] R. Debry. Improving interpretation of the decay index for DNA sequence data. , 2001, Systematic biology.
[35] John P. Huelsenbeck,et al. MRBAYES: Bayesian inference of phylogenetic trees , 2001, Bioinform..
[36] C. Matthee,et al. Mining the mammalian genome for artiodactyl systematics. , 2001, Systematic biology.
[37] B. Payseur,et al. Failure of the ILD to determine data combinability for slow loris phylogeny. , 2001, Systematic biology.
[38] Heather M. Amrine,et al. Mitochondrial versus nuclear gene sequences in deep-level mammalian phylogeny reconstruction. , 2001, Molecular biology and evolution.
[39] R. DeSalle,et al. Phylogenetic utility of different types of molecular data used to infer evolutionary relationships among stalk-eyed flies (Diopsidae). , 2001, Systematic biology.
[40] C. Orme,et al. Noise and incongruence: interpreting results of the incongruence length difference test. , 2000, Molecular phylogenetics and evolution.
[41] M. S. Lee,et al. Tree robustness and clade significance. , 2000, Systematic biology.
[42] J. J. Flynn,et al. Whence the red panda? , 2000, Molecular phylogenetics and evolution.
[43] Liang-kong Lin,et al. Evolutionary trends of the mitochondrial lineage differentiation in species of genera Martes and Mustela. , 2000, Genes & genetic systems.
[44] O. Bininda-Emonds,et al. Factors influencing phylogenetic inference: a case study using the mammalian carnivores. , 2000, Molecular phylogenetics and evolution.
[45] W. Moore,et al. Comparative evolution of the mitochondrial cytochrome b gene and nuclear beta-fibrinogen intron 7 in woodpeckers. , 2000, Molecular biology and evolution.
[46] R. Masuda,et al. Intrageneric Diversity of the Cytochrome b Gene and Phylogeny of Eurasian Species of the Genus Mustela (Mustelidae, Carnivora) , 2000, Zoological science.
[47] S. O’Brien,et al. Patterns of diversity among SINE elements isolated from three Y-chromosome genes in carnivores. , 2000, Molecular biology and evolution.
[48] N. Takezaki,et al. A molecular phylogenetic framework for the Ryukyu endemic rodents Tokudaia osimensis and Diplothrix legata. , 2000, Molecular phylogenetics and evolution.
[49] Hitoshi Suzuki,et al. A Phylogenetic View on Species Radiation in Apodemus Inferred from Variation of Nuclear and Mitochondrial Genes , 2000, Biochemical Genetics.
[50] Diana J. Kao,et al. Molecular evidence regarding the origin of echolocation and flight in bats , 2000, Nature.
[51] J. Sumich,et al. Marine Mammals: Evolutionary Biology , 1999 .
[52] R. Baker,et al. Corroboration among Data Sets in Simultaneous Analysis: Hidden Support for Phylogenetic Relationships among Higher Level Artiodactyl Taxa , 1999, Cladistics : the international journal of the Willi Hennig Society.
[53] C. W. Kilpatrick,et al. Phylogenetic Relationships of the Order Insectivora Based on Complete 12S rRNA Sequences from Mitochondria , 1999, Cladistics : the international journal of the Willi Hennig Society.
[54] R. Masuda,et al. Intraspecific Variation of Mitochondrial Cytochrome b Gene Sequences of the Japanese Marten Martes melampus and the Sable Martes zibellina (Mustelidae, Carnivora, Mammalia) in Japan , 1999 .
[55] Hidetoshi Shimodaira,et al. Multiple Comparisons of Log-Likelihoods with Applications to Phylogenetic Inference , 1999, Molecular Biology and Evolution.
[56] J. L. Gittleman,et al. Building large trees by combining phylogenetic information: a complete phylogeny of the extant Carnivora (Mammalia) , 1999, Biological reviews of the Cambridge Philosophical Society.
[57] M A Newton,et al. Bayesian Phylogenetic Inference via Markov Chain Monte Carlo Methods , 1999, Biometrics.
[58] R. Wayne,et al. Phylogenetic relationships of otters (Carnivora: Mustelidae) based on mitochondrial cytochrome b sequences , 1998 .
[59] K. Bauer,et al. Immunogenetic Evidence for the Phylogenetic Sister Group Relationship of Dogs and Bears (Mammalia, Carnivora: Canidae and Ursidae) , 1998, Experimental and Clinical Immunogenetics.
[60] F. Galibert,et al. Traced orthologous amplified sequence tags (TOASTs) and mammalian comparative maps , 1998, Mammalian Genome.
[61] G. Lecointre,et al. The 'evolutionary signal' of homoplasy in protein-coding gene sequences and its consequences for a priori weighting in phylogeny. , 1998, Comptes rendus de l'Academie des sciences. Serie III, Sciences de la vie.
[62] J. J. Flynn,et al. Phylogeny of the Carnivora (Mammalia): congruence vs incompatibility among multiple data sets. , 1998, Molecular phylogenetics and evolution.
[63] L. Barnes. Evolution and adaptation of marine mammals in the pacific rim , 1997 .
[64] R DeSalle,et al. Multiple sources of character information and the phylogeny of Hawaiian drosophilids. , 1997, Systematic biology.
[65] B. Rannala,et al. Bayesian phylogenetic inference using DNA sequences: a Markov Chain Monte Carlo Method. , 1997, Molecular biology and evolution.
[66] R. Woodroff. Carnivore behavior, ecology, and evolution, vol. 2: Edited by John L. Gittleman Cornell University Press, 1996. £66.50 hbk, £29.50 pbk (xii + 644 pages) ISBN 0 8014 2190 X , 1997 .
[67] R. Honeycutt,et al. Systematics of Mustelid-Like Carnivores , 1997 .
[68] M. Newton,et al. Phylogenetic Inference for Binary Data on Dendograms Using Markov Chain Monte Carlo , 1997 .
[69] Ú. Árnason,et al. Phylogenetic relationships within caniform carnivores based on analyses of the mitochondrial 12S rRNA gene , 1996, Journal of Molecular Evolution.
[70] B. Efron,et al. Bootstrap confidence levels for phylogenetic trees. , 1996, Proceedings of the National Academy of Sciences of the United States of America.
[71] B. Efron,et al. Bootstrap confidence levels for phylogenetic trees. , 1996, Proceedings of the National Academy of Sciences of the United States of America.
[72] H. Takei,et al. Amino acid sequences of hemoglobin β chains of five species of pinnipeds:Neophoca cinerea, Otaria byronia, Eumetopias jubatus, Pusa hispida, andPagophilus groenlandica , 1996, Journal of protein chemistry.
[73] B. Rannala,et al. Probability distribution of molecular evolutionary trees: A new method of phylogenetic inference , 1996, Journal of Molecular Evolution.
[74] Olivier Gascuel,et al. On the Interpretation of Bootstrap Trees: Appropriate Threshold of Clade Selection and Induced Gain , 1996 .
[75] S. Talbot,et al. A phylogeny of the bears (Ursidae) inferred from complete sequences of three mitochondrial genes. , 1996, Molecular phylogenetics and evolution.
[76] Michael A. Newton,et al. Bootstrapping phylogenies: Large deviations and dispersion effects , 1996 .
[77] Ú. Árnason,et al. Phylogenetic analyses of complete cytochromeb genes of the order Carnivora with particular emphasis on the Caniformia , 1996, Journal of Molecular Evolution.
[78] Carol J. Bult,et al. Constructing a Significance Test for Incongruence , 1995 .
[79] A. Zharkikh,et al. Estimation of confidence in phylogeny: the complete-and-partial bootstrap technique. , 1995, Molecular phylogenetics and evolution.
[80] A. Zharkikh. Estimation of evolutionary distances between nucleotide sequences , 1994, Journal of Molecular Evolution.
[81] C. Bult,et al. TESTING SIGNIFICANCE OF INCONGRUENCE , 1994 .
[82] Wen-Hsiung Li,et al. What is the Bootstrap Technique , 1994 .
[83] K. Bremer,et al. BRANCH SUPPORT AND TREE STABILITY , 1994 .
[84] M. Yoshida,et al. A molecular phylogeny of the family Mustelidae (Mammalia, Carnivora), based on comparison of mitochondrial cytochrome b nucleotide sequences. , 1994, Zoological science.
[85] C. Moritz,et al. Multiple nuclear-gene phylogenies: application to pinnipeds and comparison with a mitochondrial DNA gene phylogeny. , 1994, Molecular biology and evolution.
[86] W. Wheeler,et al. Higher level relationships of the arctoid Carnivora based on sequence data and "total evidence". , 1994, Molecular phylogenetics and evolution.
[87] M. Wolsan. Phylogeny and classification of early European Mustelida (Mammalia: Carnivora) , 1993 .
[88] A. Queiroz. For Consensus (Sometimes) , 1993 .
[89] Joseph Felsenstein,et al. Is there something wrong with the bootstrap on phylogenies? A reply to Hillis and Bull , 1993 .
[90] J. Bull,et al. An Empirical Test of Bootstrapping as a Method for Assessing Confidence in Phylogenetic Analysis , 1993 .
[91] M. Nei,et al. Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. , 1993, Molecular biology and evolution.
[92] E. Otaka,et al. The giant panda is closer to a bear, judged by α- and β-hemoglobin sequences , 1993, Journal of Molecular Evolution.
[93] A. Zharkikh,et al. Statistical properties of bootstrap estimation of phylogenetic variability from nucleotide sequences. I. Four taxa with a molecular clock. , 1992, Molecular biology and evolution.
[94] A. Zharkikh,et al. Statistical properties of bootstrap estimation of phylogenetic variability from nucleotide sequences: II. Four taxa without a molecular clock , 1992, Journal of Molecular Evolution.
[95] Ú. Árnason,et al. The complete mitochondrial DNA sequence of the harbor seal, Phoca vitulina , 1992, Journal of Molecular Evolution.
[96] M. Goodman,et al. A molecular perspective on mammalian evolution from the gene encoding interphotoreceptor retinoid binding protein, with convincing evidence for bat monophyly. , 1992, Molecular phylogenetics and evolution.
[97] S. Hedges. The number of replications needed for accurate estimation of the bootstrap P value in phylogenetic studies. , 1992, Molecular biology and evolution.
[98] P. Goloboff. HOMOPLASY AND THE CHOICE AMONG CLADOGRAMS , 1991, Cladistics : the international journal of the Willi Hennig Society.
[99] A. Berta,et al. Skeletal morphology and locomotor capabilities of the archaic pinniped Enaliarctos mealsi , 1990 .
[100] S. Fong,et al. Characterization and comparative structural features of the gene for human interstitial retinol-binding protein. , 1990, The Journal of biological chemistry.
[101] David Baltimore,et al. The V(D)J recombination activating gene, RAG-1 , 1989, Cell.
[102] J. Farris. THE RETENTION INDEX AND THE RESCALED CONSISTENCY INDEX , 1989, Cladistics : the international journal of the Willi Hennig Society.
[103] A. Wyss. FLIPPERS AND PINNIPED PHYLOGENY: HAS THE PROBLEM OF CONVERGENCE BEEN OVERRATED? , 1989 .
[104] James W. Archie,et al. Homoplasy Excess Ratios: New Indices for Measuring Levels of Homoplasy in Phylogenetic Systematics and a Critique of the Consistency Index , 1989 .
[105] H. Kishino,et al. Evaluation of the maximum likelihood estimate of the evolutionary tree topologies from DNA sequence data, and the branching order in hominoidea , 1989, Journal of Molecular Evolution.
[106] J. L. Gittleman. Carnivore Behavior, Ecology, and Evolution , 1989, Springer US.
[107] A. Wyss,et al. Skeleton of the Oldest Known Pinniped, Enaliarctos mealsi , 1989, Science.
[108] L. Barnes. A new enaliarctine pinniped from the Astoria Formation, Oregon, and a classification of the Otariidae (Mammalia: Carnivora) , 1989, Contributions in science.
[109] A. Wyss. Evidence from flipper structure for a single origin of pinnipeds , 1988, Nature.
[110] J. J. Flynn. Ancestry of sea mammals , 1988, Nature.
[111] K. Bremer. THE LIMITS OF AMINO ACID SEQUENCE DATA IN ANGIOSPERM PHYLOGENETIC RECONSTRUCTION , 1988, Evolution; international journal of organic evolution.
[112] R. Mahley,et al. DNA sequence of the human apolipoprotein B gene. , 1987, DNA.
[113] M. Miyamoto,et al. Hemoglobin of pandas: Phylogenetic relationships of carnivores as ascertained with protein sequence data , 1986, Naturwissenschaften.
[114] Ú. Árnason,et al. Pinniped phylogeny enlightened by molecular hybridizations using highly repetitive DNA , 1986 .
[115] M. Miyamoto,et al. Biomolecular Systematics of Eutherian Mammals: Phylogenetic Patterns and Classification , 1986 .
[116] W. W. Jong. Protein sequence evidence for monophyly of the carnivore families Procyonidae and Mustelidae. , 1986 .
[117] J. Felsenstein. CONFIDENCE LIMITS ON PHYLOGENIES: AN APPROACH USING THE BOOTSTRAP , 1985, Evolution; international journal of organic evolution.
[118] J. Felsenstein. Confidence Limits on Phylogenies With a Molecular Clock , 1985 .
[119] W. D. de Jong,et al. Primary structures of the alpha-crystallin A chains of twenty-eight mammalian species, chicken and frog. , 1984, European journal of biochemistry.
[120] Ø. Wiig. On the Relationship of Pinnipeds to Other Carnivores , 1983 .
[121] A. R. Templeton,et al. PHYLOGENETIC INFERENCE FROM RESTRICTION ENDONUCLEASE CLEAVAGE SITE MAPS WITH PARTICULAR REFERENCE TO THE EVOLUTION OF HUMANS AND THE APES , 1983, Evolution; international journal of organic evolution.
[122] Allan C. Wilson,et al. Construction of phylogenetic trees for proteins and nucleic acids: Empirical evaluation of alternative matrix methods , 1978, Journal of Molecular Evolution.
[123] A. Friday,et al. On the evolution of myoglobin. , 1978, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.
[124] J. Farris. Phylogenetic Analysis Under Dollo's Law , 1977 .
[125] R. Tedford,et al. Relationship of Pinnipeds to Other Carnivores (Mammalia) , 1976 .
[126] C. A. Repenning. Adaptive evolution of sea lions and walruses , 1976 .
[127] C. Ray. Geography of Phocid Evolution , 1976 .
[128] S. Ridgway,et al. Mammals of the sea : biology and medicine , 1973 .
[129] J. Farris. Estimating Phylogenetic Trees from Distance Matrices , 1972, The American Naturalist.
[130] W. Fitch. Toward Defining the Course of Evolution: Minimum Change for a Specific Tree Topology , 1971 .
[131] J. Farris. Methods for Computing Wagner Trees , 1970 .
[132] U. Seal. Carnivora systematics: a study of hemoglobins. , 1969, Comparative biochemistry and physiology.
[133] V. Sarich. Pinniped origins and the rate of evolution of carnivore albumins. , 1969, Systematic zoology.
[134] J. Farris,et al. Quantitative Phyletics and the Evolution of Anurans , 1969 .
[135] E. Mitchell. Controversy over Diphyly in Pinnipeds , 1967 .
[136] L. Cavalli-Sforza,et al. PHYLOGENETIC ANALYSIS: MODELS AND ESTIMATION PROCEDURES , 1967, Evolution; international journal of organic evolution.
[137] E. Feltz,et al. CYTOGENETIC COMPARISON OF SOME PINNIPEDS (MAMMALIA: EUTHERIA) , 1967 .
[138] J. Ling. Functional Significance of Sweat Glands and Sebaceous Glands in Seals , 1965, Nature.
[139] R. Sokal,et al. A METHOD FOR DEDUCING BRANCHING SEQUENCES IN PHYLOGENY , 1965 .
[140] R. Thorne,et al. Phenetic and Phylogenetic Classification , 1964, Nature.
[141] I. McLAREN. Are the Pinnipedia Biphyletic , 1960 .
[142] C. A. Leone,et al. Comparative Serology of Carnivores , 1956 .
[143] J. Felsenstein. Evolutionary trees from DNA sequences: A maximum likelihood approach , 2005, Journal of Molecular Evolution.
[144] H. Kishino,et al. Dating of the human-ape splitting by a molecular clock of mitochondrial DNA , 2005, Journal of Molecular Evolution.
[145] Mark P. Simmons,et al. How meaningful are Bayesian support values? , 2004, Molecular biology and evolution.
[146] Ú. Árnason,et al. A molecular view of pinniped relationships with particular emphasis on the true seals , 2004, Journal of Molecular Evolution.
[147] A. Austin,et al. Increased congruence does not necessarily indicate increased phylogenetic accuracy--the behavior of the incongruence length difference test in mixed-model analyses. , 2002, Systematic biology.
[148] D. Swofford. PAUP*: Phylogenetic analysis using parsimony (*and other methods), Version 4.0b10 , 2002 .
[149] D. A. Kramerov,et al. CAN—a pan-carnivore SINE family , 2001, Mammalian Genome.
[150] J. J. Flynn,et al. Tempo and mode of evolution in an orthologous Can SINE , 2001, Mammalian Genome.
[151] B. Larget,et al. Markov Chain Monte Carlo Algorithms for the Bayesian Analysis of Phylogenetic Trees , 2000 .
[152] R. Olmstead,et al. A simulation study of reduced tree-search effort in bootstrap resampling analysis. , 2000, Systematic biology.
[153] David Posada,et al. MODELTEST: testing the model of DNA substitution , 1998, Bioinform..
[154] George Gaylord Simpson,et al. Classification of mammals : above the species level , 1997 .
[155] K. Lange. Reconstruction of Evolutionary Trees , 1997 .
[156] L. Werdelin. Carnivoran ecomorphology: a phylogenetic perspective , 1996 .
[157] D. Penny,et al. Use of spectral analysis to test hypotheses on the origin of pinnipeds. , 1995, Molecular biology and evolution.
[158] J. Leunissen,et al. Eye Lens Crystallins and the Phylogeny of Placental Orders: Evidence for a Macroscelid-Paenungulate Clade , 1993 .
[159] J. Sgouros,et al. A Molecular View of Primate Supraordinal Relationships from the Analysis of Both Nucleotide and Amino Acid Sequences , 1993 .
[160] John J. Flynn,et al. A Phylogenetic Analysis and Definition of the Carnivora , 1993 .
[161] Ú. Árnason,et al. The Use of Highly Repetitive DNA for Resolving Cetacean and Pinniped Phylogenies , 1993 .
[162] A. Berta. New Enaliarctos (Pinnipedimorpha) from the Oligocene and Miocene of Oregon and the role of "Enaliarctids" in Pinniped phylogeny , 1991 .
[163] M. Wolsan. Pochodzenie i ewolucja ssaków morskich Polski , 1991 .
[164] M. McKenna. The alpha crystallin A chain of the eye lens and mammalian phylogeny , 1991 .
[165] T. Nojima. A MORPHOLOGICAL CONSIDERATION OF THE RELATIONSHIPS OF PINNIPEDS TO OTHER CARNIVORANS BASED ON THE BONY TENTORIUM AND BONY FALX , 1990 .
[166] M. Goodman,et al. Perspectives from amino acid and nucleotide sequences on cladistic relationships among higher taxa of eutheria , 1990 .
[167] W. C. Wozencraft. The Phylogeny of the Recent Carnivora , 1989 .
[168] S. O’Brien,et al. Molecular and Biochemical Evolution of the Carnivora , 1989 .
[169] J. Flynn. Phylogeny of the Carnivora , 1988 .
[170] G. Braunitzer,et al. [Hemoglobins of pandas]. , 1987, Comptes rendus des seances de la Societe de biologie et de ses filiales.
[171] A. Wyss. The walrus auditory region and the monophyly of pinnipeds. American Museum novitates ; no. 2871 , 1987 .
[172] J. Couturier,et al. Evolution chromosomique chez les carnivores , 1986 .
[173] D. Domning,et al. STATUS OF STUDIES ON FOSSIL MARINE MAMMALS , 1985 .
[174] L. Ginsburg. Sur la position systématique du petit panda, Ailurus fulgens (Carnivora, Mammalia) , 1982 .
[175] W. W. Jong. Eye Lens Proteins and Vertebrate Phylogeny , 1982 .
[176] C. Muizon. Les relations phylogenetiques des Lutrinae (Mustelidae, Mammalia) , 1982 .
[177] Morris Goodman,et al. Mammalian phylogeny studied by sequence analysis of the eye lens protein alpha-crystallin , 1981 .
[178] A. J. Gray,et al. Paleobiogeography: Current Concerns. (Book Reviews: Historical Biogeography, Plate Tectonics, and the Changing Environment) , 1980 .
[179] B. Efron. Bootstrap Methods: Another Look at the Jackknife , 1979 .
[180] E. Mitchell,et al. The Enaliarctinae : a new group of extinct aquatic Carnivora and a consideration of the origin of the Otariidae. Bulletin of the AMNH ; v. 151, article 3 , 1973 .
[181] N. I. Phillips,et al. Carnivora systematics: immunological relationships of bear serum albumins. , 1970, Comparative biochemistry and physiology.
[182] Maximilian Weber. Die säugetiere. Einführung in die anatomie und systematik der recenten und fossilen Mammalia, von dr Max Weber. , 1904 .
[183] Maximilian Weber. Die Säugetiere : Einführung in die Anatomie und Systematik der recenten und fossilen Mammalia , 1904 .