Advances and challenges in computational plasma science

Scientific simulation, which provides a natural bridge between theory and experiment, is an essential tool for understanding complex plasma behaviour. Recent advances in simulations of magnetically confined plasmas are reviewed in this paper, with illustrative examples, chosen from associated research areas such as microturbulence, magnetohydrodynamics and other topics. Progress has been stimulated, in particular, by the exponential growth of computer speed along with significant improvements in computer technology. The advances in both particle and fluid simulations of fine-scale turbulence and large-scale dynamics have produced increasingly good agreement between experimental observations and computational modelling. This was enabled by two key factors: (a) innovative advances in analytic and computational methods for developing reduced descriptions of physics phenomena spanning widely disparate temporal and spatial scales and (b) access to powerful new computational resources. Excellent progress has been made in developing codes for which computer run-time and problem-size scale well with the number of processors on massively parallel processors (MPPs). Examples include the effective usage of the full power of multi-teraflop (multi-trillion floating point computations per second) MPPs to produce three-dimensional, general geometry, nonlinear particle simulations that have accelerated advances in understanding the nature of turbulence self-regulation by zonal flows. These calculations, which typically utilized billions of particles for thousands of time-steps, would not have been possible without access to powerful present generation MPP computers and the associated diagnostic and visualization capabilities. In looking towards the future, the current results from advanced simulations provide great encouragement for being able to include increasingly realistic dynamics to enable deeper physics insights into plasmas in both natural and laboratory environments. This should produce the scientific excitement which will help to (a) stimulate enhanced cross-cutting collaborations with other fields and (b) attract the bright young talent needed for the future health of the field of plasma science.

[1]  F. Jenko,et al.  Numerical computation of collisionless drift Alfvén turbulence , 1999 .

[2]  Chio Cheng,et al.  The integration of the Vlasov equation for a magnetized plasma , 1977 .

[3]  E. Parker The reconnection rate of magnetic fields. , 1973 .

[4]  M. R. Wade,et al.  Effect of rotation on H-mode transport in DIII–D via changes in the E×B velocity shear , 2002 .

[5]  Shinji Tokuda,et al.  Global gyrokinetic simulation of ion temperature gradient driven turbulence in plasmas using a canonical Maxwellian distribution , 2003 .

[6]  David Robert Schultz,et al.  Laser-modified charge-transfer processes in proton collisions with lithium atoms , 2003 .

[7]  H. Qin,et al.  Erratum: Three-dimensional multispecies nonlinear perturbative particle simulations of collective processes in intense particle beams [Phys. Rev. ST Accel. Beams 3, 084401 (2000)] , 2000 .

[8]  W. W. Lee,et al.  Gyrokinetic approach in particle simulation , 1981 .

[9]  D. C. Griffin,et al.  Collisional-radiative study of lithium plasmas. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[10]  J. Taylor,et al.  Stability of general plasma equilibria - I formal theory , 1968 .

[11]  K. Watanabe,et al.  Magnetohydrodynamic Vlasov simulation of the toroidal Alfven eigenmode , 1995 .

[12]  A. Y. Aydemir,et al.  Nonlinear studies of m = 1 modes in high-temperature plasmas , 1992 .

[13]  Jacques Denavit,et al.  Comparison of Numerical Solutions of the Vlasov Equation with Particle Simulations of Collisionless Plasmas , 1971 .

[14]  Eduardo F. D'Azevedo,et al.  Advances in full-wave modeling of radio frequency heated, multidimensional plasmas , 2002 .

[15]  Ernest J. Valeo,et al.  Simulation of optical and synthetic imaging using microwave reflectometry , 2004 .

[16]  J. Dawson Particle simulation of plasmas , 1983 .

[17]  E. Frieman,et al.  Drift Instabilities in General Magnetic Field Configurations , 1968 .

[18]  W. Lee,et al.  Gyrokinetic Particle Simulation Model , 1987 .

[19]  J. Kinsey,et al.  Non-dimensional scaling of turbulence characteristics and turbulent diffusivity , 2001 .

[20]  F. C. Díaz The VASIMR Rocket. , 2000 .

[21]  J. Weiland,et al.  Micro-stability and transport modelling of internal transport barriers on JET , 2003 .

[22]  F. Jenko,et al.  Prediction of significant tokamak turbulence at electron gyroradius scales. , 2002, Physical review letters.

[23]  R. Denton,et al.  Role of dispersive waves in collisionless magnetic reconnection. , 2001, Physical review letters.

[24]  J. Connor,et al.  Kinetic-ballooning-mode theory in general geometry , 1980 .

[25]  Marshall N. Rosenbluth,et al.  POLOIDAL FLOW DRIVEN BY ION-TEMPERATURE-GRADIENT TURBULENCE IN TOKAMAKS , 1998 .

[26]  Zhihong Lin,et al.  A fluid-kinetic hybrid electron model for electromagnetic simulations , 2001 .

[27]  Jeff M. Candy,et al.  Gyrokinetic turbulence simulation of profile shear stabilization and broken gyroBohm scaling , 2002 .

[28]  E. Belova,et al.  Kinetic effects on the stability properties of field-reversed configurations. II. Nonlinear evolution , 2004 .

[29]  Charlson C. Kim,et al.  Comparisons and physics basis of tokamak transport models and turbulence simulations , 2000 .

[30]  W. Park,et al.  Plasma simulation studies using multilevel physics models , 1999 .

[31]  Tetsuya Sato,et al.  Linear and nonlinear particle-magnetohydrodynamic simulations of the toroidal Alfvén eigenmode , 1998 .

[32]  R. Bangerter Ion beam fusion , 1999, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[33]  Dieter Biskamp,et al.  Magnetic Reconnection via Current Sheets , 1986 .

[34]  M. Greenwald,et al.  Edge turbulence imaging in the Alcator C-Mod tokamak , 2001 .

[35]  E. Belova,et al.  Kinetic Effects on the Stability Properties of Field-reversed Configurations: II. Nonlinear Evolution , 2003 .

[36]  J. Wesson Non-linear behaviour of hydromagnetic instabilities , 1976 .

[37]  Marco Brambilla,et al.  Numerical simulation of ion cyclotron waves in tokamak plasmas , 1999 .

[38]  W. Tang Microinstability theory in tokamaks , 1978 .

[39]  R. Budny,et al.  Local Transport in Joint European Tokamak Edge-Localized, High-Confinement Mode Plasmas with H, D, DT, and T Isotopes , 2000 .

[40]  J. L. V. Lewandowski,et al.  Shear-Alfven Waves in Gyrokinetic Plasmas , 2000 .

[41]  Scott Klasky,et al.  Grid-based Parallel Data Streaming Implemented for the Gyrokinetic Toroidal Code , 2003 .

[42]  Frank Jenko,et al.  Electron temperature gradient driven turbulence , 1999 .

[43]  B. Leblanc,et al.  High-speed imaging of edge turbulence in NSTX , 2004 .

[44]  Robert B. Laughlin,et al.  The physical basis of computability , 2002, Computing in Science & Engineering.

[45]  W. Lee,et al.  Partially linearized algorithms in gyrokinetic particle simulation , 1993 .

[46]  R. Kulsrud,et al.  Magnetic reconnection in a magnetohydrodynamic plasma , 1998 .

[47]  J. Breslau,et al.  Nonlinear simulation studies of tokamaks and STs , 2003 .

[48]  M Porkolab,et al.  Experimental observations of mode-converted ion cyclotron waves in a tokamak plasma by phase contrast imaging. , 2003, Physical review letters.

[49]  J. Shalf,et al.  Evaluation of Cache-based Superscalar and Cacheless Vector Architectures for Scientific Computations , 2003, ACM/IEEE SC 2003 Conference (SC'03).

[50]  D. Strickler,et al.  Eliminating islands in high-pressure free-boundary stellarator magnetohydrodynamic equilibrium solutions. , 2002, Physical review letters.

[51]  R. Samtaney,et al.  Grid -Based Parallel Data Streaming implemented for the Gyrokinetic Toroidal Code , 2003, ACM/IEEE SC 2003 Conference (SC'03).

[52]  Scott E. Parker,et al.  Gyrokinetic turbulence simulations with kinetic electrons , 2001 .

[53]  Bruce I. Cohen,et al.  The numerical tokamak project: simulation of turbulent transport , 1995 .

[54]  F. Jenko,et al.  Electron temperature gradient turbulence. , 2000, Physical review letters.

[55]  H. R. Strauss,et al.  Numerical studies of nonlinear evolution of kink modes in tokamaks , 1976 .

[56]  R. Waltz,et al.  Anomalous transport scaling in the DIII-D tokamak matched by supercomputer simulation. , 2003, Physical review letters.

[57]  E. D. Fredrickson,et al.  Recent advances in the design of quasiaxisymmetric stellarator plasma configurations , 2001 .

[58]  V. Schmidt,et al.  Control, data acquisition, and remote participation for fusion research , 2002 .

[59]  Scott E. Parker,et al.  A δ f particle method for gyrokinetic simulations with kinetic electrons and electromagnetic perturbations , 2003 .

[60]  R. Gruber,et al.  Global Waves in Cold-Plasmas , 1986 .

[61]  S. Cranmer Ion Cyclotron Wave Dissipation in the Solar Corona: The Summed Effect of More than 2000 Ion Species , 2000 .

[62]  Benoit Labit,et al.  Global numerical study of electron temperature gradient-driven turbulence and transport scaling , 2003 .

[63]  S. Parker,et al.  A fully nonlinear characteristic method for gyrokinetic simulation , 1993 .

[64]  P. Diamond,et al.  Turbulence spreading into the linearly stable zone and transport scaling , 2003 .

[65]  A. Bruce Langdon,et al.  THEORY OF PLASMA SIMULATION USING FINITE-SIZE PARTICLES. , 1970 .

[66]  A. Fukuyama,et al.  Three-dimensional structures of ICRF waves in tokamak plasmas , 1984 .

[67]  W. Tang,et al.  Advanced computations in plasma physics , 2002 .

[68]  Naoki Mizuguchi,et al.  Dynamics of spherical tokamak plasma on the internal reconnection event , 2000 .

[69]  M. Rosenbluth,et al.  Bursting in Transport and Turbulence in Drift Wave -- Zonal Flow Systems , 2001 .

[70]  Steven J. Plimpton,et al.  The NIMROD code: a new approach to numerical plasma physics , 1999 .

[71]  Ian Foster,et al.  Building the US National Fusion Grid: results from the National Fusion Collaboratory Project , 2004 .

[72]  F. W. Perkins,et al.  Heating tokamaks via the ion-cyclotron and ion-ion hybrid resonances , 1977 .

[73]  Klaus Hallatschek,et al.  Nonlocal simulation of the transition from ballooning to ion temperature gradient mode turbulence in the tokamak edge , 2000 .

[74]  Ronald H. Cohen,et al.  Low-to-high confinement transition simulations in divertor geometry , 2000 .

[75]  M. Yamada Review of the recent controlled experiments for study of local reconnection physics , 2001 .

[76]  R. E. Waltz,et al.  An Eulerian gyrokinetic-Maxwell solver , 2003 .

[77]  Manickam,et al.  High- beta Disruption in Tokamaks. , 1995, Physical review letters.

[78]  B. Rogers,et al.  Phase space of tokamak edge turbulence, the L-H transition, and the formation of the edge pedestal , 1998 .

[79]  E. Belova,et al.  Kinetic effects on the stability properties of field-reversed configurations. I. Linear stability , 2003 .

[80]  Takaya Hayashi,et al.  Externally driven magnetic reconnection and a powerful magnetic energy converter , 1979 .

[81]  R. White,et al.  Excitation of zonal flow by drift waves in toroidal plasmas , 1999 .

[82]  W. Horton Drift waves and transport , 1999 .

[83]  V. Vasyliūnas Theoretical models of magnetic field line merging , 1975 .

[84]  Marco Brambilla,et al.  Full Wave Simulations of Fast Wave Mode Conversion and Lower Hybrid Wave Propagation in Tokamaks , 2004 .

[85]  H. Shirai,et al.  Toroidal mode structure in weak and reversed magnetic shear plasmas and its role in the internal transport barrier , 1999 .

[86]  E. Joffrin,et al.  MHD internal transport barrier triggering in low positive magnetic shear scenarios in JET , 2002 .

[87]  M. Brambilla,et al.  Numerical simulation of ion cyclotron heating of hot tokamak plasmas , 1988 .

[88]  Eduardo F. D'Azevedo,et al.  All-orders spectral calculation of radio-frequency heating in two-dimensional toroidal plasmas , 2001 .

[89]  Tetsuya Sato,et al.  Non-linear simulations of internal reconnection events in spherical tokamaks , 2000 .

[90]  M. Shay,et al.  Formation of Electron Holes and Particle Energization During Magnetic Reconnection , 2003, Science.

[91]  Z. Lin,et al.  Size scaling of turbulent transport in magnetically confined plasmas. , 2002, Physical review letters.

[92]  K. H. Burrell,et al.  Effects of E×B velocity shear and magnetic shear on turbulence and transport in magnetic confinement devices , 1997 .

[93]  Michael Hesse,et al.  Geospace Environmental Modeling (GEM) magnetic reconnection challenge , 2001 .

[94]  W. Tang Connecting Again with Magnetic Reconnection , 1998, Science.

[95]  R. Hide Cosmical magnetic fields , 1978, Nature.

[96]  V. V. Parail,et al.  Energy and particle transport in plasmas with transport barriers , 2002 .

[97]  Amita Das,et al.  Secondary instability in drift wave turbulence as a mechanism for zonal flow and avalanche formation , 2001 .

[98]  E. Frieman,et al.  Nonlinear gyrokinetic equations for low-frequency electromagnetic waves in general plasma equilibria , 1981 .

[99]  Ronald C. Davidson,et al.  Three-dimensional multispecies nonlinear perturbative particle simulations of collective processes in intense particle beams , 2000 .

[100]  Diego del-Castillo-Negrete,et al.  Formation and sustainment of electrostatically driven spheromaks in the resistive magnetohydrodynamic model , 2001 .

[101]  H. Ji,et al.  Experimental investigation of the neutral sheet profile during magnetic reconnection , 1999 .