High-resolution x-ray imaging of extended lasing plasmas.

An x-ray imaging system with a bent focusing crystal was used for time-resolved one-dimensional imaging of a long plasma column of highly ionized aluminum. This scheme uses a focusing geometry with a spherically bent crystal and a slit on the Rowland circle. Alternative schemes of x-ray monochromatic imaging are briefly discussed. The homogeneity of the up to 40-mm-long laser-generated plasma column was studied with a temporal resolution of 100 ps. The potential spatial resolution of the instrument is 90 microm or better. Monochromatic images taken on the resonance He alpha line of Al XII characterize the homogeneity of a plasma generated to study a recombination x-ray laser scheme, giving an amplified spontaneous emission in Al XI.

[1]  H. H. Johann,et al.  Die Erzeugung lichtstarker Röntgenspektren mit Hilfe von Konkavkristallen , 1931 .

[2]  Hiroaki Nishimura,et al.  Temperature mapping of compressed fusion pellets obtained by monochromatic imaging , 1995 .

[3]  Ingo Uschmann,et al.  New crystal spectrograph designs and their application to plasma diagnostics (invited) , 1992 .

[4]  D. Villeneuve,et al.  Monochromatic x-ray imaging of a laser produced plasma. , 1989, Applied optics.

[5]  W. Molander,et al.  X‐ray spectroscopic diagnostics of a copper plasma produced by a laser line focused onto a thin foil , 1986 .

[6]  B. Fraenkel Monochromatic x‐ray images of x‐ray emitting sources , 1980 .

[7]  O. Renner,et al.  Theoretical analysis of double-crystal spectrograph for high-resolution spectroscopy of laser-generated X-rays , 1992 .

[8]  Justin S. Wark,et al.  Double‐crystal high‐resolution x‐ray spectroscopy of laser‐produced plasmas , 1993 .

[9]  Ingo Uschmann,et al.  X-ray microscopy of laser-produced plasmas with the use of bent crystals , 1991 .

[10]  Richard Lee,et al.  Spectra—A model for K-shell spectroscopy☆ , 1984 .

[11]  Jean-Claude J. Gauthier,et al.  Monochromatic x-ray imaging with streak and framing cameras , 1994, Optics & Photonics.

[12]  Dynamics of Ne-like populations in the germanium x-ray laser , 1993 .

[13]  Tryggve Johansson,et al.  Über ein neuartiges, genau fokussierendes Röntgenspektrometer , 1933 .

[14]  N. Rizvi,et al.  Intensity measurements of a quasi-monochromatic X-ray beam formed by a spherically bent crystal , 1990 .

[15]  G. Jamelot,et al.  Recombination scheme in lithium-like ions for X-UV amplification , 1990 .

[16]  W. Molander,et al.  X-ray laser experiments using laser-vaporized copper-foil plasmas , 1987 .

[17]  Qian,et al.  Characteristics and evolution of plasma-jet-like structures in line-focused laser-produced plasmas. , 1989, Physical review. A, General physics.

[18]  D. Taupin,et al.  Théorie dynamique de la diffraction des rayons X par les cristaux déformés , 1964 .

[19]  C. Chenais-popovics,et al.  Time resolved X-ray monochromatic imaging of a laser-produced plasma at 0.6635 nm wavelength , 1995 .

[20]  Henri Pepin,et al.  Effects of irradiation non-uniformity on X-ray laser physics , 1991 .

[21]  Villeneuve,et al.  Electron-temperature inhomogeneities along an x-ray laser plasma. , 1993, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[22]  S. Takagi Dynamical theory of diffraction applicable to crystals with any kind of small distortion , 1962 .

[23]  D. Villeneuve,et al.  Spectroscopy and gain dynamics issues in inhomogeneous X-ray laser plasmas , 1995 .

[24]  A. Klisnick,et al.  Effective rates for li-like ions; calculated XUV gains in Al10+ , 1990 .

[25]  R. Kauffman X-Ray Spectroscopy of Laser-Produced Plasmas , 1984 .