Predicting the dynamic behaviour of torus milling tools when climb milling using the stability lobes theory

This paper investigates stability and dynamic behaviour of torus tool in climb milling on 5 positioned axes. The stability lobes theory is used to enable stable cutting conditions to be chosen. As the adaptation of such a theory to complex milling configurations is a difficult matter, new methods are presented to identify the dynamic parameters. Tool dynamic characteristics (stiffness and natural pulsation) are determined with an original coupled calculations-tests method. Start and exit angles are computed exactly using an original numerical model. A sensitivity analysis highlights the influence of machining parameters on stability of climb milling. This shows that a third region of “potential instability” must be taken into account in plotting stability lobes, due to the uncertainty of prediction due to modelling and identification of parameters. The results were validated experimentally with an innovative approach, especially through the use of high-speed cameras. Analysis of vibrations and the surface roughness allowed the analytical model to be verified so as to optimise the inclination of the tool on the surface.

[1]  Frederic Monies,et al.  Method for rapid characterisation of cutting forces in end milling considering runout , 2006 .

[2]  Jon R. Pratt,et al.  Stability Prediction for Low Radial Immersion Milling , 2002 .

[3]  Lutfi Taner Tunc,et al.  Modeling and simulation of 5-axis milling processes , 2009 .

[4]  Erhan Budak,et al.  Analytical models for high performance milling. Part I: Cutting forces, structural deformations and tolerance integrity , 2006 .

[5]  Kai Cheng,et al.  Modelling the machining dynamics of peripheral milling , 2005 .

[6]  Tobias Surmann,et al.  Simulation of milling tool vibration trajectories along changing engagement conditions , 2007 .

[7]  Gábor Stépán,et al.  Machine Tool Chatter and Surface Location Error in Milling Processes , 2006 .

[8]  Gilles Dessein,et al.  SUPPRESSION OF PERIOD DOUBLING CHATTER IN HIGH-SPEED MILLING BY SPINDLE SPEED VARIATION , 2011 .

[9]  Tarek Mabrouki,et al.  Prédiction du comportement vibratoire du fraisage latéral de finition des pièces à parois minces , 2002 .

[10]  Yusuf Altintas,et al.  Mechanics and dynamics of general milling cutters.: Part I: helical end mills , 2001 .

[11]  Fathy Ismail,et al.  Analytical stability lobes including nonlinear process damping effect on machining chatter , 2011 .

[12]  Gábor Stépán,et al.  On the higher-order semi-discretizations for periodic delayed systems , 2008 .

[13]  Stéphane Segonds,et al.  Correction of milling tool paths by tool positioning defect compensation , 2003 .

[14]  Gábor Stépán,et al.  Nonlinear Dynamics of High-Speed Milling—Analyses, Numerics, and Experiments , 2005 .

[15]  F. Ismail,et al.  Machining chatter in flank milling , 2010 .

[16]  Gábor Stépán,et al.  Updated semi‐discretization method for periodic delay‐differential equations with discrete delay , 2004 .

[17]  Gábor Stépán,et al.  On the chatter frequencies of milling processes with runout , 2008 .

[18]  Gilles Dessein,et al.  Integration of dynamic behaviour variations in the stability lobes method: 3D lobes construction and application to thin-walled structure milling , 2006 .

[19]  Daniel Brissaud,et al.  A More Realistic Cutting Force Model at Uncut Chip Thickness Close to Zero , 2007 .

[20]  B. Mann,et al.  Stability of Interrupted Cutting by Temporal Finite Element Analysis , 2003 .

[21]  Gilles Dessein,et al.  Toolpath dependent stability lobes for the milling of thin-walled parts , 2008 .

[22]  Philippe Lorong,et al.  Simulation of a finishing operation : milling of a turbine blade and influence of damping , 2012 .

[23]  T. Insperger,et al.  Analysis of the Influence of Mill Helix Angle on Chatter Stability , 2006 .

[24]  E. Govekar,et al.  ON STABILITY PREDICTION FOR LOW RADIAL IMMERSION MILLING , 2005 .

[25]  Yusuf Altintas,et al.  Analytical Prediction of Stability Lobes in Milling , 1995 .

[26]  Claire Lartigue,et al.  Characterization of 3D surface topography in 5-axis milling , 2011, ArXiv.

[27]  Walter Rubio,et al.  Kinematic modelling of a 3-axis NC machine tool in linear and circular interpolation , 2010, ArXiv.

[28]  Eiji Shamoto,et al.  Analytical prediction of chatter stability in ball end milling with tool inclination , 2009 .

[29]  Gilles Dessein,et al.  Surface roughness variation of thin wall milling, related to modal interactions , 2008 .

[30]  Yusuf Altintas,et al.  Mechanics and dynamics of general milling cutters.: Part II: inserted cutters , 2001 .

[31]  Yusuf Altintas,et al.  An Improved Time Domain Simulation for Dynamic Milling at Small Radial Immersions , 2003 .

[32]  Gábor Stépán,et al.  On stability prediction for milling , 2005 .

[33]  Erdem Ozturk,et al.  Investigation of lead and tilt angle effects in 5-axis ball-end milling processes , 2009 .

[34]  Erhan Budak,et al.  Analytical models for high performance milling. Part II: Process dynamics and stability , 2006 .

[35]  Grégoire Peigné,et al.  Simulation of low rigidity part machining applied to thin-walled structures , 2011 .